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Abstract—Rank selection, i.e. the choice of factorization rank,
is the first step in constructing Nonnegative Matrix Factorization
(NMF) models. It is a long-standing problem which is not unique
to NMF, but arises in most models which attempt to decompose
data into its underlying components. Since these models are often
used in the unsupervised setting, the rank selection problem is
further complicated by the lack of ground truth labels. In this
paper, we review and empirically evaluate the most commonly
used schemes for NMF rank selection.

Index Terms—Rank selection, Nonnegative Matrix Factoriza-
tion

I. INTRODUCTION

In data analytics and machine learning, one often encounters
large datasets organised into a matrix X € R™*™, Many
useful methods begin by approximating this matrix as the
product of low-rank factors X =~ WH' with W ¢ Rmxk,
H € R"** and k < min(m, n). These linear models are used
for simpler representations, interpretability, or simply to enable
computations on massive data and are a workhorse of modern
data analytics [1]]. Nonnegative Matrix Factorization (NMF)
is a linear model which enforces element-wise nonnegativity
constraints on both the factor matrices, i.e. {W,H} > 0. The
extraordinary effectiveness of NMF in decomposing nonneg-
ative inputs into its constituent parts has lead to its use in
many different domains including analytical chemistry, earth
sciences, text mining, amongst others [1]].

Another appealing feature of linear models is the relatively
low number of hyperparameters associated with the model.
Typically, only the factorization rank is needed to fit a linear
model, with the exception of some regularization hyperparam-
eters. This is appealing in practice since there are fewer knobs
to turn during exploratory data analysis. Finally, limiting the
number of hyperparameters makes it more tractable to ensure
reproducibility in linear models [2].
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In this paper we study the choice of the factorization rank
k for NMF. There are subtle differences between the rank,
nonnegative rank, and the number of components in the linear
models we are trying to fit. Unlike numerical rank, nonnegative
rank is NP-hard to compute [3]], and the number of components
is often derived from expert insight [[1]. In this paper, we are
concerned with the third category of the choice of k, where
we try to select the number of components in a data matrix
without overfitting to the noise present in the data.

We consider multiple metric-based approaches, which in-
volve computing NMF for various ranks, computing a metric
for each of those factorizations, and choosing the rank that
optimises the metric. These methods include using residual
error, Bayesian Information Criteria, and the Core Consistency
Diagnostic. We also consider methods designed for the uncon-
strained case that use the singular values of the input matrix,
and Cross Validation (CV) tailored for NMF. We provide a
detailed description of the implementations along with their
assumptions and computational complexity in Section
Extensive numerical experiments are performed and presented
in Section [[V|to evaluate the efficacy of the various methods.
We believe that such a study is necessary to develop reliable,
reproducible, and robust data analytics pipelines.

Based on the analyses of this paper, we conclude that
Singular Value Thresholding (SVT) based methods and CV
are the most promising techniques for use in practice. While
the singular value based methods are not designed for non-
negativity constraints, they are relatively cheap to employ
and work surprisingly well. Cross validation techniques have
more theoretical justification for NMF and tend to work more
robustly than singular value based methods, but they are very
computationally expensive. We discuss these tradeoffs and
future directions of inquiry in Sections |V|and

II. PRELIMINARIES
A. Notation

We use regular fonts for scalars (e.g., k), bold lowercase for
vectors (e.g., x) and bold uppercase for matrices (e.g., A). For
A, its ith row is &; and jth column is a;. I,, represents the
nxn identity matrix and 1 is a matrix of all ones of appropriate
size. The diag(-) operator extracts the diagonal elements of a
matrix or forms a diagonal matrix from a vector depending
on the context. A x B represents the element-wise product
between two compatible matrices. The comparison X > 0



is performed in an element-wise manner. nnz(-) counts the
number of nonzero entries in an vector or matrix.

B. NMF Preliminaries
Formally, the NMF optimization problem is
min HX—WHTH2 (1)
W>0,H>0 F

with a nonnegative input matrix X € R"*" and low-rank
matrices W € R7** and H € R** with & < min (m, n).
We assume that X is organized in a manner in which its
columns correspond to different data samples and the rows
to the features. The matrix W represents the “basis” matrix,
that is the atomic parts used to generate the columns of X.
Rows of H describe how to combine the columns of W and
are the k-dimensional embeddings of the data samples.

From the above discussion, it is clear that we assume that
our data is linearly generated as Xy = WH' and then
perturbed via some noise term N. If we have additive Gaussian
noise, then the optimization via Eq. (I) is appropriate to
recover the factors. Other formulations for the objective are
present for different noise models, see the references in [1}
Chapter 5.1], but we limit our study to the most common
Gaussian case. Conditions when these factors are unique have
been studied but are beyond the scope of this work.

Finally, we want to stress that NMF is typically used in an
unsupervised context. That is no labels are associated with the
different columns of X. Therefore, adapting hyperparameter
optimization strategies from the supervised learning context is
not direct and need to be appropriately modified.

C. NMF Algorithms

An example of a typical software for NMF is Paral-
lel Low-rank Approximation with Nonnegativity Constraints
(PLANC) [4], [S]. PLANC is designed to solve the opti-
mization problem Eq. (I) for dense or sparse, nonnegative
input matrices X. It contains various algorithms for computing
NMF, including both Block Coordinate Descent (BCD) and
direct optimization variants. In BCD-style algorithms, the
matrices W and H are divided into blocks and updated in
sequence till some stopping criteria is satisfied. For example,
in the popular two-block BCD variant Alternating Nonnegative
Least Squares (ANLS), W is kept fixed and H is updated
followed by keeping the updated H fixed and updating W [6].
In the direct optimization methods, both W and H are updated
simultaneously using information like the current gradient,
Hessian, and a various other factors [[7]. Matrix multiplication
is the computational bottleneck of NMF with most algorithms
needing to compute W'W, H'H, WX, and H' X .

III. RANK SELECTION METHODS

We describe rank selection methods in Constrained Low
Rank Approximation (CLRA) useful for the NMF case.

A. Metric Based

The most common rank-selection method is the “scree
test” [8]]. The residual or fit is plotted versus the number of
components in order to identify the “elbow” in the graph. For
CLRA methods, this graph should be monotonically decreas-
ing if a good approximation algorithm is used. Unfortunately,
this test is rather subjective since scree plots can have multiple
“elbows” making it difficult to decide the correct rank.

A prototypical scree test is shown in Algorithm [T| For the
standard scree test, the metric computed will be the fit or
residual m(k) = HX - WkHZH . Let SELECTBEST be the

procedure by which we select theE‘elbow” from m. However,
this procedure is not well defined for the standard scree test.

We estimate the cost of running a scree test with regular
residuals as the metric used. The time is broken down into
three categories; 1) computing the approximations, 2) comput-
ing the metrics, and 3) selecting the best £ from the metrics.

Tj%cree = Lapprox + Tmetric + Tselect'

Let Tawmr be the time taken to compute an NMF approximation
for a given value of k. In general, this time is dependent on
the size of the input matrix and the rank chosen but for the
purposes of rank selection we can approximate it by ky,,x for
all k¥ € [Kmin, kmax)- This is reasonable as the dependence is a
polynomial in k and our approximate cost can only differ by
at most a constant. Computing the NMF is an iterative process
which costs approximately

Tamr = O (nilers : (4mnkmax + (m+n) k12nax + Tupd)) )
for njers of updating the factor matrices W and H. Ty,q is
the time taken to update both factor matrices which is algo-
rithm dependent. The rest of the costs arise from computing
WX H'X", W'W, and H'H (see Section [I-C).

Another assumption is that the residuals are returned along
with the factor matrices on a call to NMF. Therefore, for a
regular scree test there is no overhead of computing the metric.
The time taken for selecting the “elbow” is unclear but it is
typically done by scanning over m € RFmax—Fmin We shall
assume it is approximately linear in the number of candidate
ranks nyanks = Kmax — kmin. Putting all this together we get
the cost of performing a scree test as,

Tcree = MranksMseeds INMF + O(nranks)-

Similar methods exist with different metrics being used
in place of the fit. One family of methods is based on the
Bayesian Information Criteria (BIC) [9]. As noted above,
the residual for CLRA models are typically monotonically
decreasing which may result in overfitting when rank is in-
creased. In order to resolve this monotonic decrease, a penalty
term for the number of parameters in the model is introduced.
For large ranks, this penalty term will dominate the residual
and make it easier to select the rank with the minimum BIC
criteria. This removes the subjectivity of “elbow” selection
present in the scree test as well. A commonly used criteria

is BIC;(k) = log (I\X*Xkaw) tk (m+")1°g( o )

mn m+n )°
Computing this criteria can be done in constant time given




Algorithm 1 A general scree test framework

Algorithm 2 A typical SVT procedure

1: procedure SCREETEST(X, kmin, Emax, Tseeds)
Input: X € R™*™ the input data matrix, [Kmin, Fmax] 15
the range of ranks to check, and ngeeqgs is the number of
restarts per k for NMF.
Output: K,y is the rank to use for the approximation.
> Fit an NMF model for each k.

2: for k € [kmim kmax} do

3: for s €1,..., Ngeeqs do

4 [W,, Hy] = NMF(X, k).
5: end for

> Select the NMF model with least error for k.
[Wi,Hy] = BESTMODEL({ (W, H;)}).
7: end for
> Compute metrics for each of the different models.
m = COMPUTEMETRIC({ (W, Hy)}).
: k = SELECTBEST(m).
10: Return: %.
11: end procedure

the residual from the NMF approximations. The running time
for a BIC based scree test is the same as a standard scree test.

TBIC = nranksnseedsTNMF + O(nranks)~

The Core Consistency Diagnostic (CORCONDIA) is a
method for determining the number of components to select in
a CANDECOMP/PARAFAC (CP) model for tensor data which
can be extended to the nonnegative case [[10]. The intuition
behind this approach is to determine how well a CP decompo-
sition fits the data when compared to a Tucker decomposition
with the same factors. The Tucker core is computed using the
factor matrices returned from CP and then compared to a ten-
sor with 1 on its superdiagonal. CORCONDIA was shown to
discern the appropriate number of CP components on multiple
real world data sets [10]. This method can be specialised to
the matrix case where we measure how independent or non-
overlapping the different components are that are discovered
for each rank. The CORCONDIA measure will be calculated
for a number of different rank choices and the rank with the
highest CORCONDIA score will be selected.

The matrix version of CORCONDIA works as follows.
Given factor matrices W, € R™*% and H;, € R"*¥, we form
the “core matrix” G, € R***¥ as G, = WX (H]) . This
matrix is compared to the “ideal” core matrix I, which repre-
sents an exact factorization of the data matrix. Then the metric
for the matrix case, is derived from CORCONDIA as m(k) =
1-|G — Ik||% / ||I;€||2F We can also modify the core matrix
calculation above to enforce nonnegativity of Gy via tk;e
following least squares problem érli>rlo HX — WkaHZHF,
but we work with the unconstrainedkv_ersion here.

Computing the CORCONDIA for a particular k£ involves
two different least squares solves costing O ((m +n) k2) fol-
lowed by a norm calculation costing O(k?). Typically, we shall
compute the CORCONDIA scores only for the approximation
with the smallest residual among the different seeds for a

1: procedure SVT(X, p)
Input: X € R™*" the input data matrix, and p are the
optional parameters.
Output: K,y is the rank to use for the approximation.
> Compute the Singular Value Decomposition (SVD).
2: [U,X, V] = SVD(X).
> Compute threshold (may have optional parameters).
3: 6 = FINDTHRESHOLD(U, 3, V, p).
> Compute the best rank.
4: k=>,1{c; > 0}.
5: Return: k.
6: end procedure

given rank. Finally, we select the rank that maximizes this
score. Thus using a scree test with CORCONDIA will cost
approximately

TC = nranksnseedsTNMF+O (nranks ((m + n) kglax))+0(nranks)'
It should be stressed that even with all the different metrics,

the majority of the time is spent in performing the 1 nksTseeds
different factorizations.

B. Perturbation Analysis

Another class of rank-selection methods is based upon
perturbation analysis like the popular NMFk [/11]]—[/13[]. NMFk
makes multiple perturbations of the input X. Then for every
rank, NMFk factorizes each of the perturbed matrices and
reorders the columns of each of the resulting Ws, using
a variation of k-medians, to match them. The rows of H
are ordered analogously to keep WH invariant and the
elementwise median of the factors are computed. The clus-
ter stability of the median factors via the Silhouette index
is calculated. The rank with the largest separation between
the relative error and silhoutte index is selected. Computing
the median factors and Silhouette index for a particular &
costs O (nperneius (k2 + mk? 4 (m + n)k)), where npe is the
number of perturbations and ngyys is the number of iterations
used in clustering [[13]]. The cost for NMFk is

TNMFk = TranksMper I NMF
+0 (nPernCIUS (kfnax + mkrznax + (m + n>kmax)) + O(nranks)-

C. SVD Thresholding Methods

The SVD has also been used to “denoise” the data matrix
and estimate the signal rank. While this does not correspond
directly to notion of nonnegative rank or components used
in NMF, these methods are shown to work well in practice.
These methods are known as SVT methods and are outlined
in Algorithm [2| The heart of these approaches consist of the
asymptotic analysis of a sequence of matrix recovery problems
Xmn = Lmn + Ny, as m,n — oo proportionately, i.e. %
always remains approximately a fixed ratio. It is assumed that
the Ly, ,, has a fixed rank & and the noise matrix comes from
a particular distribution. Notice that our data X is a specific
instance in this chain of matrices.



Gavish and Donoho study the white noise case where the
noise matrix consists of uncorrelated mean-zero Gaussian
entries of unknown variance [[14]. Their threshold formula
becomes O ~ —= TR The Parallel Analysis (PA)
method of rank selection also falls in this category [15]. In
PA, multiple copies of the input are generated by randomly
permuting entries within each column of the input matrix. The
rationale is that this permutation will destroy the low-rank
signal but not affect the noise. An empirical distribution of
the noise singular values from these copies is computed and
only those singular values from the original data matrix are
retained when they exceed a certain percentile of the noise sin-
gular values. Dobriban and Owen analyse this procedure and
develop theory for PA [16]]. They “derandomize” the method
to compute only a single SVD of the original data matrix.
Finally, Donoho et al. study the case of correlated noise [[17].
They also show finite-sample optimality at reasonable problem
sizes. While the last two methods’ cost for computing the
threshold is not as simple as Gavish and Donoho’s, they are
still constant for every singular value considered.

The SVT procedure starts by computing the SVD of the
input data matrix. Using the empirical singular values and
singular vectors, a threshold € is computed. Only the com-
ponents with singular values greater than this threshold are
retained and thus the rank is determined. SVT-style methods
cost approximately

Tsvr = Tsvp + O(Nanks)-

Only a single SVD of the input is needed, which costs O(mn?)
flops for m > n.

O median

D. Cross Validation

CV is a fundamental paradigm in data analysis to aid in
model hyperparameter selection and to counter overfitting. It
eliminates the need to rely on user inputs (for e.g., locating
elbows) and reduces this part of the analysis to a numerical
criterion. In a supervised setting, the basic idea is to partition
labeled data into training and test sets, fit the model to the
training, or “held-in”, data and test the model error on the
test, or “held-out”, data. The idea of ¢-fold cross validation is
to partition the data into ¢ sets, and treat each of the sets in
turn as the hold-out set.

The difficulty in holding out an entire sample of data for
NMF, say column j of X, is that it we can not fit all the model
parameters. In this case row j of H will be left out. Similarly,
leaving out a row ¢ of X will exclude fitting row ¢ of W.
The solutions for cross-validating NMF are inspired by similar
methods for SVD [[18]], [19]. Wold cross-validates the rank of
an SVD model by leaving out a set of matrix elements [/18].
This holdout pattern ensures that no column or row of X is
completely missing. Another approach for the SVD by Gabriel
is to hold out a single entry of X at a time [19].

These methods can be applied directly to NMF by working
with a masking matrix M € {0,1}"”" with masking either
corresponding to a single held out entry, as in the case of
Gabriel hold outs, or multiple entries for Wold hold outs. The

held-in entries correspond to 1 in the masking matrix and held
out to 0 [20]. An ANLS-style NMF algorithm would proceed
to solve the following “censored” least-squares problems,

H = argmin HM * (X — WHT) H
F

H>0
W:argminHM* (XfWHT)H ,
W>0 F

where * denotes the element-wise multiplication. Finally,
the fit is calculated on the held out entries to evaluate the
model H(l —M) x (X - WHT> . Owen and Perry [21]
generalize the Gabriel method to h(ﬁd out X s elements of
X at a time for both SVD and NMF in a method known as
Bi-Cross-Validation (BiCV). Kanagal and Sindhwani designed
structured masks to alleviate some of the computational bot-
tlenecks associated with BiCV for NMF [22].

We start with analysing the cost of computing a single
approximation of the factor matrices in the presence of held-
out data. For the BCD approach to NMF we need to repeatedly
perform the “censored” Nonnegative Least Squares (NLS)
shown in Eq. (2). Let us consider the update for H. Using
the fact that M is Boolean, this problem reduces to using the
following normal equations form [20]:

wT (M * WHT> W' (M*X). 3)

Let us denote B = M X to handle the RHS of Eq. (3). This
can be precomputed, costing O(mn) flops, and cached for all
iterations. Let us look at Eq. (3) column by column. Unlike
the regular NMF case we now have different LHS for each
row j of H depending on the bitmask defined by column m;,
(WTdiag (mj)W) h; = W'b,. Computing the RHS is a
simple matrix multiplication, W' B, which costs 2mnk flops.
Computing the n different LHS terms, each costing 2mk?
flops, results in a total of 2mnk? operations. Similarly ac-
counting for updating W, we can see that each inner iteration
of masked NMF takes approximately 4mnk? + 4mnk + Tupd
operations. Notice the extra O(mnk?) term when compared
to a regular NMF algorithm’s inner iteration costs.

The alternating iteration continues until the objective func-
tion value is sufficiently small or the change in value is suffi-
ciently small. The objective function satisfies the following:

e (x| -

2
IV X3 — 2T (W (M X) H) + [+ WHTHF

which can make computation more efficient compared to direct
evaluation because the first term is constant with respect to W
and H and can be precomputed and the second term involves
the RHS matrix of Eq. (3) which can be re-used. The final
term, M x WH' becomes the bottleneck computation. For
every nonzero in M, we need to compute the inner product
of two k-length vectors costing 2nnz (M) k flops. For ¢-fold
CV, we can assume M has (1 — 1/¢) mn nonzeros.

Another approach for individual NMF in CV is via direct
optimization. We need to compute the cost of forming the
gradient, which is the computational bottleneck for most first



TABLE I: Comparison of the different rank-selection methods in terms of operations costs. The approximation and metric
calculations are for a single low-rank approximation (see Section .

Algorithm No. of Approximations Approximation Costs Metric Costs

SVT 1 O(mn?) O(1)

Scree Mranks * Mseeds O (Niters + (dmnk + (m + n) k2 + Tupd O(l)

BIC Nranks * Mseeds O (nNiters = (dmnk + (m + n) k2 + Tupd 0(1)

CORCONDIA Nranks * Mseeds O (Nigers - (dmnk + (m + n) k2 + Typa O ((m+n)k?)

NMFk Mranks * Tlper O (Nigers - (4mnk + (m + n) k2 + Tupd) o ((kd +mk? + (m + n) k) nclusnper)
Ccv (BCD) TMranks * Mseeds * Mfolds o (niters . (4mnk2 + dmnk + 2 (1 - 1/nf01ds) mnk + Tupd)) (@] (mnk/nfolds)

CV (Direct)

Tlranks * Tlseeds * Tfolds

o (niters : (8mnk +4 (1 - 1/nf(ylds) mnk + Tupd))

@] (mnk/nfolds)

and second order direct optimizatiozn methods. Considering
f(W,H) = HM * (X - WHT) HF, the gradient for each
factor is given by,

%:Q(WT(M*X)—WT (M*WHT)) (5)
% —2 <HT (M+X)"~ HT (M~ WHT)T> ©)

The first term of each gradient costs the same as applying
the data matrix individually to each of the factors costing
4dmnk flops. The second terms costs 2nnz (M) k + 4dmnk
flops. Thus, the cost of each inner iteration is approximately
8mnk + 2nnz (M) k + T,pq operations.

Assuming the number of CV folds is nqs, we shall per-
form MyanksMseedsNolds different masked NMF approximations.
Unlike the non-masked version, computing the ‘“held-out”
residual is no longer an output of the approximation and will
require O (mnk/ngqgs) flops. The best rank is selected by
finding the lowest aggregated held-out residual for every k

in O (Nyanks) operations. Including O ((1 —

L )mnk) cost
for computing the objective, we get

Tfolds

Tev = NranksMiseeds Nfolds L MNME
+ 0] (nranksnseedsmnk) + O(nranks)~

The different costs for the various methods discussed in this
section are summarised in Table 1

IV. NUMERICAL EXPERIMENTS

The numerical experiments were performed on a server with
two Intel® Xeon® E5-2680 v3 CPUs and 377 GB of DDR4-
2,133 MHz DRAM using Matlab version RZOZleﬂ

A. Datasets

We conducted experiments on the following datasets.

1) Synmats: These matrices are formed as X = WH' +0oN.
W and H are chosen with iid. U[0,1] entries. The
columns of W and rows of H sum to one. Here N is
a noise matrix which could arise from AN(0,1), U[0, 1],
or U[—1,1]. The parameter o is used to scale as some
percentage of the maximum entry in WH'. Finally, to
ensure nonnegativity of X we clip any values which be-
come negative to 0. The dimensions for X were 100 x 600
with the number of true components £ = 10. We vary o
from 1% to 37% in increments of 4%.

Uhttps://gitlab.com/seswar3/cv-nmf

2) Fashion MNIST [23]: This dataset comprises 70,000
28 x 28 grayscale images of clothing articles divided into
10 categories (e.g., trouser, coat, shirt, etc.). We randomly
sample 1,000 images, 100 from each class, and flatten them
into vectors of length 784. These vectors form the columns
of X. Some examples from the dataset are shown in Fig.

B. Methods Compared

We compare the following methods in our experiments.

1) SVHT - This is the optimally tuned singular value hard
thresholding (SVHT) algorithm from Gavish and Donoho
[[14] (see Section [I1I-C]).

We evaluate the Relative Error, BIC, and the matrix
version of CORCONDIA metric-based scree tests (see
Section [[II-A). We compute NMF approximations for
each rank from 5 different initializations using the ANLS
method. The NLS solver used is the Block Principal Pivot-
ing (BPP) method [24]. The NMF algorithms were limited
to 100 iterations. The median value across the different
random initializations are reported. The rank reported is
the min (or max for CORCONDIA) value of the metric
among the ranks tested.

Cross-validation - We run 5-fold CV holding out roughly
20% entries of X in each fold. We again utilize a ANLS
method with BPP used as the “censored” NLS solver. Outer
iterations were limited to a maximum of 100 iterations with
5 random initializations. The median of the different CV
errors, across initializations and folds, are reported.

2)

3)

a) Heldin: The elementwise held-in error is computed

2
as HM * (X - WHT) H /nnz(M). These entries are

seen by the masked NMFFWhile fitting for W and H.
b) Heldout: The elementwise hezld—out error is computed as
H(1 ~ M) (X - WHT) H / (mn — nnz(M)).
¢) Generalization: Average of tlfe above quantities.
The rank reported is the min elementwise error among the
ranks tested.
For the metric and CV ranks, we explicitly force SELECTBEST
to be simple, like the min, to improve reproducibility in such
methods. We would like to insure against any form of human
interpretation of the plots in our study. NMFk is not included
in these experiments since it involves the tuning of other
hyperparameters. We observed that the rank selected by NMFk
to vary substantially based on the values of the silhouette
threshold and perturbation noise variance parameters.


https://gitlab.com/seswar3/cv-nmf
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Fig. 1: Sample images and spectra of Fashion MNIST.
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Fig. 2: Ranks selected for synthetic matrices corrupted with
varying amounts of Gaussian noise. The true rank is 10.

C. Synthetic Matrices

The performance of the different methods for the synthetic
matrices perturbed by Gaussian noise is shown in Fig.
Recall that the true number of components is 10. We tested
all values of £ € [1,20]. Only SVHT and CV are able
to recover this value for some noise levels whereas all the
other methods fail to detect the true £ even for small noise
values. SVHT behaves in an expected manner by correctly
discovering the number of true components when the noise
levels are low and then progressively becoming worse as the
noise level rises. After around 13% noise it fails to recover k.
CV initially overestimates the number of components but is
able to ascertain the true £ till around 25% noise.

Let us investigate the scree plots for the low, medium, and
high noise cases (see Fig. [3)). Figure [3a] shows the lowest noise
level of 1%. While the “elbow” in the scree plots are evident
on inspection, most of the metrics show monotonic decrease
with increasing rank and thus fail to detect the true k. For
the medium noise regime, Fig. [3bl we observe the classic CV
curves with an initial decrease followed by a sharp increase
for the heldout and generalization plots. The BIC and relative
error plots all show a monotonic decrease making it hard even
to detect & by more complicated means than simply taking the
minimum. Finally, in the high noise regime (Fig. all the
methods fail. Most curves are monotonic with no discernible
elbow with the exception of CV generalization. However,
detecting that k£ = 10 in that curve is not immediately evident.
One final observation is that the CORCONDIA metric behaves
similarly irrespective of the noise level.

We next see the cases with uniform noise. As before, only
CV and SVHT recover the the true number of components
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Fig. 3: Scree plots for different levels of Gaussian noise. The

red line shows the rank selected by the method while the black
line shows that of SVHT.

for different noise levels. The U [0,1] case seemed easier
to handle in our experiments, with SVHT recovering the
true number of components for all noise levels and CV also
performing well. CV again initially overestimates the number
of components but is more tolerant to the higher noise regions
for U [—1, 1] noise than SVHT. Another point of note is that in
our synthetic experiments SVHT either detects the true rank
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TABLE II: Run times on Gaussian synthetic matrix.

Algorithm | SVHT Scree CV (BCD)
Time Taken (s) | 0.0044s  11.3065s  823.2508s
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Fig. 5: Fashion MNIST scree plots. The outputs of SVHT is
165, CV Heldin is 200, CV Heldout and Generalization is 85,
relative error is 120, BIC is 120, and CORCONDIA is 5.

or underapproximates that value as noise increases. CV can
also overestimate the rank in the low noise settings.

Table ([l shows the run time needed to perform the one run of
rank selection for a synthetic cases (Gaussian noise of 13%).
This is to quantify the computational complexity described in
Table [I| The advantages of not sweeping through the different
ranks is evident with screeing taking ~ 2,500 than SVT and
CV taking a further 72x longer.

D. Fashion MNIST Case Study

The spectrum of the sampled Fashion MNIST dataset is
shown in Fig. The numerical rank for this matrix is 783,
which is nearly full rank. Approximately 90%, 95%, and
99% of the Frobenius norm is captured at rank 15, 54,
and 226, respectively. The number of different classes of
clothing articles is only 10. It is reasonable to assume that
the number of different “parts” used to construct these would
lie somewhere closer to 10 than the numerical rank.
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Fig. 6: K-Means clustering results on the embeddings gener-
ated for different ranks. Both measures remain rather agnostic
to the & value chosen with the quality remaining flat.

SVHT predicts the rank for this dataset to be 165. In order to
select the different ranks to test in the scree and CV methods,
we adopt a binary search like procedure between rank 1 and
200. Apart from the midpoints obtained via the binary search,
we also evaluate a few neighbouring rankf] as shown in Fig.
The CV plots display expected behaviour with the heldin error
monotically decreasing with the minimum at 200, and the
heldout and generalization curves showing a inflection point
at around 85. CORCONDIA is again similar to the synthetic
examples, with rank 5 having the highest value. The scree
plots for the relative error and BIC show different behaviour
than earlier. Instead of monotonically decreasing, we see an
inflection point at rank 120. This is surprising, since relative
error is expected to not increase as we increase rank. On closer
inspection, we observe that at large ranks the NLS solver
breaks down for multiple random initializations and return all
zeros for the factors. Only a few of the restarts were able to
recover good solutions. On the other hand, CV was able to
show the inflection points without any numerical errors. Next
we test the embeddings, rows of H, returned by NMF for the
different ranks considered. For each rank, we pick the best
approximation from the 5 different seeds in terms of relative

2The ranks tested were 1, 5, 10, 25, 50, 60, 65, 70, 75, 80, 82, 83, 85, 88,
90, 100, 110, 120, 150, and 200.



errors. Then we run K-means on the embeddings to obtain
10 clusters. We measure the normalized mutual information
between the cluster labels and true categories in Fig. [6] We
also report the the supervised accuracy from these labels by
first matching each cluster membership vector to the true
categorical labels followed by counting the correctly identified
samples. We see both NMI and accuracy jump to reasonable
values at £k = 5 and remain relatively flat till £ = 200. The
highest NMI is reached at £k = 70 and highest accuracy at
k = 5. This observation along with the relative plateauing of
these clustering metrics indicate £ < 100 is a reasonable size
for this dataset. This has an added benefit of remaining in the
range where the NLS solvers remain stable.

V. DISCUSSION

From our numerical experiments it is clear that rank se-
lection is a difficult task with no method successful in all
scenarios. The SVT methods show the most promise with
their relatively cheap computational needs and nice theoretical
properties for unconstrained matrix denoising. In our synthetic
experiments, SVHT never overestimated k£ and had very good
results on all three types of noise. However, in the image
dataset it seems to overestimate the number of components
and returns the largest number among the methods tested.

CV is the other promising method in our experiments.
It seems to be more tolerant to a wider range of noise in
the synthetic experiments and returns reasonable k estimates
even in the Fashion MNIST case study. Surprisingly, it does
overestimate k at low noise levels which warrants further
study. Unfortunately, CV is by far the most expensive of all
the methods in our experiments, taking an order of magnitude
more time than any of the metric based scree tests.

The metric based methods, simple scree plots, BIC, and
CORCONDIA, all performed poorly. The relative error and
BIC plots were mostly monotonic and returned the largest &
tested. For low noise regimes, a more sophisticated method
than simply choosing the min might perform well (see
Fig. 3a). However this is still a subjective selector and for
the sake of reproducibility a simple selection criteria should
be the default option. CORCONDIA seemed to behave in the
same manner for all inputs and performed poorly.

VI. CONCLUSIONS AND FUTURE WORK

We surveyed and described some popular methods for
selecting the rank for NMF. We compared these tools against
synthetic and real-world datasets via numerical experimenta-
tion. While no method clearly outperforms the rest, we believe
that spectral methods, like the SVHT, should be the first option
to try when encountering a new dataset. However, in scenarios
with lower signal-to-noise ratios, CV methods can provide
more accurate estimates albeit at a higher computational cost.

Further theoretical analyses are needed to understand the
roles of masks in the constrained least squares settings. This
would help shed light on the failure of CV in the low-noise set-
tings. Future avenues of research could also be in reducing the
computational overhead of CV. Some immediate approaches

could be via the use of more structured masks for partitioning
the input matrix. Parallel algorithms for accelerating censored
least squares is another viable option.
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