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Abstract—Nonnegative Matrix Factorization (NMF) and Non-
negative Coupled Matrix Tensor Factorization (NCMTF) are
Constrained Low-Rank Approximation (CLRA) models which
have found use in many applications. In particular, NMF and its
variants have been shown to produce high-quality soft clustering
and topic modeling results with the property that each clustering
assignment relates to a corresponding topic; thereby providing
insight into the nature of each item in a given cluster. However,
NMF and its variants are unable to process heterogeneous data
represented as one or more coupled tenors. Similarly, there do
not exist tensorized methods which fully preserve the afore-
mentioned desirable clustering and topic modeling properties of
NMF. This paper develops a higher order analog of Joint-NMF,
Joint Nonnegative Coupled Matrix Tensor Factorization (Joint-
NCMTF), capable of factorizing heterogeneous tensor datasets
whilst fully preserving these NMF properties. To accomplish
this, we develop higher-order analogs of the entire NMF process,
including crucial pre and post-processing steps. By incorporating
additional dimensions of information present in datasets posed
as coupled higher-order tensors, our proposed Joint-NCMTF
method yields higher quality clustering and topic modeling results
than methods which incorporate less information. We empirically
demonstrate the effectiveness of our proposed method on multiple
synthetic and two real-world topic modeling tasks.

Index Terms—Numerical analysis, approximation methods,
text analysis, clustering methods

I. INTRODUCTION

Topic modeling and clustering are both increasingly impor-

tant data analysis tasks. Applications across many disciplines

rely on them to discover latent information in data such as

in social networks [27], document analysis [31], and psy-

chometric studies [1]. Constrained Low-Rank Approximations

(CLRA) are a popular class models for addressing these

tasks, one of the most well known being Nonnegative Matrix

Factorization (NMF) [21]. NMF and its variants such as Joint

Nonnegative Matrix Factorization (Joint-NMF) [12] impose

nonnegativity on the factors such that cluster assignments

can be directly extracted without the need for downstream

post-processing clustering algorithms. The resulting cluster

assignments have the desirable the property that each cluster

assignment relates to a corresponding topic; thereby providing

insight into the nature of each item in a given cluster.

However, matrix based methods such as NMF are inherently

constrained in the type of datasets they can process and

are unable to handle datasets posed as one or more higher-

order tensors, e.g. Figure 1. This restriction limits matrix
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Fig. 1: Example Coupled Matrix Tensor dataset

based methods from incorporating potentially useful multi-

way information in datasets which can be formulated as

tensors. For this reason, significant amounts of effort have

been invested in developing tensor based methods [2] [11]

[15] [26] [18] [9] [5] [37] based upon low-rank approximations

such as Nonnegativve CANDECOMP-PARAFAC (NCP) and

Nonnegative Coupled Matrix Tensor Factorization (NCMTF),

which are capable of handling these datasets.

We propose a method based upon NCMTF which can be

viewed as a higher-order analog of Joint-NMF capable of

handling datasets posed as coupled higher-order tensors, e.g.

Figure 1, whilst preserving the desirable topic modeling ca-

pabilities of NMF. By incorporating additional dimensions of

information present in these datasets, our proposed Joint Non-

negative Coupled Matrix Tensor Factorization (Joint-NCMTF)

method yields higher-quality clustering and topic modeling

results than factorization methods which incorporate less in-

formation. To our knowledge, we are the first to investigate

factoring heterogeneous datasets posed as coupled tensor and

matrices such that clusters in conjunction with topic models

can be directly extracted from the factors similar to NMF. Our

proposed methodology leverages several novel observations,

including important data processing steps, to yield high-quality

clustering assignments. We demonstrate the effectiveness of

our proposed method on synthetic and real-world datasets

in terms of commonly used quantitative metrics as well as

qualitatively on real-world topic modeling tasks.



II. PRELIMINARIES

A. Related Work

There are many algorithms for computing matrix and tensor

decompositions due to the ubiquitousness of datasets posed in

these forms. Two such algorithms for CMTF are the Alternat-

ing Least Squares (CMTF-ALS) and the gradient-based “all-

at-once” methods proposed in [2]. The CMTF-ALS algorithm

iteratively solves for each factor matrix whilst holding the

other factor matrices constant in a Block Coordinate Descent

(BCD) framework. In this work, we adapt the CMTF-ALS

algorithm to enforce nonnegativity and symmetry constraints.

Several methods for analyzing multi-way datasets repre-

sented by coupled matrices and tensors are available. A

framework for solving the multi-way clustering problem on

coupled matrix tensor problems is proposed in [6], which they

refer to as relation graphs, based upon nonnegative alternating

minimization of KL-divergence and minimum Bregman diver-

gence. A fast method for computing a Tucker decomposition

based CMTF is developed in [11] that yields a higher Gap

statistic [35] than Tucker when applying K-Means to the

factors. A K-Means based algorithm is developed in [28] for

co-clustering sparsity constrained multi-linear decomposition.

Distributed CMTF implementations based on MadReduce

[18] and Hadoop [9] frameworks have been proposed for topic

modeling problems. Distributed and gradient based methods

for Joint-NMF are presented in [13]. Similar methodologies

developed for nonnegative tensor decompositions [29] exist

for clustering. Tensor based methods are used by many prac-

titioners to solve many real-world problems [15] [3] [4].

Several CMTF works impose nonnegativity or sparsity

constraints on the factorization, e.g. [28], [15], and [20]. Non-

negative factors can be interpreted as soft or hard clustering

assignments. However, we emphasize that all existing NCP

based NCMTF work, to the best of our knowledge, does not

explicitly leverage the nonnegativity to do clustering along

a single mode. As such, existing NCMTF work does not

investigate what additional steps or constraints are necessary

in addition to nonnegativity to yield high quality cluster

assignments. There are several steps in addition to enforcing

nonnegativity which we do in this work to yield factors from

which high-quality clustering assignments can be extracted.

Foremost amongst these are higher-order analogs of the NMF

pre and post-processing normalization steps.

Further reference on tensor decompositions and formula-

tions can be found in [22]. For a survey on comparisons

between matrix and tensor subspace clustering methods which

do not utilize nonnegativity, we refer the reader to [37].

Various CMTF and tensor-based clustering approaches appear

in: [17] [24] [30] [33] [7] [8] [26]. BCD methods in the context

of tensor and matrix decompositions are discussed in [19].

Finally, we utilize the MatLab Tensor Toolbox [10] for all

tensor operations in our algorithms.

B. Notation

We denote tensors by boldface typescript letters (e.g. X ),

matrices by uppercase letters (e.g. M), vectors by boldface

lowercase letters (e.g. v), scalars by lowercase letters (e.g.

a), a matrix norm by || · ||, and Frobenius norm by || · ||F .

We use MatLab indexing notation to index into matrices. We

use MatLab built-in and MatLab Tensor Toolbox functions

such as normr, diag, vecnorm, graph, degree,max,maxk,

and collapse in Algorithm 1 [16] [10]. We use standard

notation for matrix and tensor operations throughout the paper.

Let X be an N -order tensor. X:,i2,...,iN , X:,:,i3,··· ,iN , and X(1)

denote a mode-1 fiber, a slice along mode-1 and mode-2, and

a mode-1 matricization, respectively. The notation generalizes

to any mode-n tensor operations used in this paper. For matrix

operations, ◦, ⊗, ⊙, and ∗ denote the outer, Kronecker, Kathri-

Rao, and Hadamar products between two matrices, respec-

tively. X ≈ JA1, . . . ,AN K =
∑r

i=1 A1(:, i) ◦ · · · ◦ A3(:, i)
denotes the rank-r CP decomposition of X .

III. JOINT NONNEGATIVE COUPLED MATRIX TENSOR

FACTORIZATION

A. Modeling

Joint-NCMTF can be applied to a dataset consisting of any

number of tensors coupled along one or more modes, with an

arbitrary number of coupled matrices along each mode. Each

Joint-NCMTF will yield a set of factor matrices corresponding

to each mode of the tensors, with a coupled matrix sharing

a factor. A low-rank approximation of the original can be

derived by summing the higher-order outer products of the

factor matrices. Each order-n tensor X i, including the coupled

matrices, can be factorized into a rank-r CP factorization

X i ≈ JAi
1, . . . ,A

i
nK =

∑r
j=1 A

i
1(:, j) ◦ · · · ◦Ai

n(:, j).

For each coupling between two tensors X i and X j re-

spectively along modes k and l, we enforce that the factor

matrices along the corresponding modes are equivalent, that

is Ai
k = A

j
l . Thus, the total number of factor matrices will be

F − C where F is the total sum of all order counts for each

tensor, including coupled matrices, in the dataset and C is the

number of couplings.

To simplify the analysis, in this work we only consider

the case wherein the tensor is of third-order with a single

nonsymmetric matrix and a single symmetric matrix coupled

along the first mode. However, the framework proposed as part

of this work is capable of handling the more general case.

B. Joint-NCMTF

Consider a third-order tensor, X ∈ R
I1×I2×I3 , coupled

along its first mode with a feature matrix, M1 ∈ R
I1×F1 ,

and symmetric data-data matrix, S1 ∈ R
I1×I1 . In this case, the

NCMTF problem can be represented by the objective function:

min
[A1,Â1,A2,A3,V1]⩾0

||X − JA1,A2,A3K||2F (1)

+ α1||M1 −A1V
T
1 ||2F (2)

+ α2||S1 − Â1A
T
1 ||2F (3)

+ β||Â1 −A1||2F (4)



Where V1 ∈ R
F1×r,A1 ∈ R

I1×r, Â1 ∈ R
I1×r,A2 ∈

R
I2×r, and A3 ∈ R

I3×r represent the factors resulting from

the decomposition of X in the framework of this model, and

r denotes the desired rank. For a graphical representation of

the problem, refer to Figure 1.

Symmetry can result from the mutual interactions between

data items and is commonly represented as an undirected graph

adjacency matrix denoted by S1 in 3. This symmetry can

contain key insights into the low-rank structure of a dataset

[23] [12]. To incorporate this, we developed a higher-order-

analog of Joint-Nonnegative Matrix Factorization (Joint-NMF)

[12] via a symmetry regularization surrogate variable in 4.

Directly forcing Â1 = A1 makes (3) difficult to solve

via ANLS, necessitating relaxing the problem by removing

this strict constraint and instead constraining Â1 ≈ A1 via

regularization in (4) [23]. In this case, β is the regularization

coefficient. The larger β, the more penalized the objective

function for differences between Â1 and A1.

It is possible to incorporate nonsymmetric information into

the dataset by coupling a matrix M1 along the first mode

of X , as shown in (2). Observe that this can be extended to

accommodate several nonsymmetric matrices by concatenating

them and setting M1 equal to the result.

We can iteratively solve the NNLS subproblems via an

active-set based method [21] in a five-block BCD scheme,

updating V1,A2,A3, Â1,A1 as shown in lines 7 to 13 of

Algorithm 1. This is based on the CMTF-ALS algorithm

presented in [2] and which we refer to as Joint-NCMTF.

Observe that the NCMTF model is equivalent to setting

α2 = β = 0 (eqs. (1) to (4)) in the Joint-NCMTF formulation.

C. Auto-Coupling

Increasing the order of the dataset formulation inherently

sparsifies the problem. This can result in sparse factors with

entire rows of zeros from which it is not possible to extract

clustering assignments. To address this, we added a constraint

to penalize the zero rows in the factors. We propose a

method we refer to as “Auto-Coupling”, which couples the

tensor formulation to itself reduced in all but two modes,

i.e. coupling the matrix formulation to the tensor formulation.

In our experiments, to compute the Auto-Coupled matrix we

let M1 ∈ R
I1×I2 be X reduced along the third mode and

V1 ∈ R
I2×r be the factor matrix corresponding to M1. We

scale the weight of Auto-Coupling using the parameter α1.

IV. MULTIWAY DATA ANALYSIS VIA NCMTF

CMTF has previously been proposed as a dimensional-

ity reduction technique for use in conjunction with existing

clustering methods like K-Means [2] [11] [14]. However, to

our knowledge, little work has been done to extract cluster

assignments from a single NCMTF factor without the use of

downstream clustering algorithms. In this work we propose

a method for directly extracting clustering results from a

NCMTF factor. This preserves a desirable topic modeling

property of NMF, wherein each clustering assignment relates

to a corresponding topic; thereby providing insight into the

nature of each item in a given cluster.

A. NCMTF Normalization and Clustering

Generally when applying NMF or its variants to the task

of clustering a matrix of m data items and n features, X ∈
R

m×n, the rows of X are normalized to unit Frobenius norm.

This ensures that each data item is weighted equally in the

factorization and that the data items’ clustering is done based

upon the proportion of a data item’s features as opposed to

the magnitude of the features.

In Joint-NMF [12], the coupled symmetric adjacency matrix

S is scaled by: Let A be the unnormalized graph adjacency

matrix and D ∈ R
m×m be the diagonal matrix with the

degrees of each vertex along the diagonal. Based upon this, let

S = D
−1/2

AD
−1/2. We applied this type of normalization to

all coupled symmetric adjacency matrices in our experiments.

In the tensor case, instead of normalizing rows, we nor-

malize the tensor slices along the clustering mode to unit

Frobenius norm. For example, let X ∈ R
I1×I2×I3 . In the

case of clustering along the first mode, we set each slice

Xi:: = Xi::

||Xi::||F
. This is a higher order analog of NMF

normalization which we observed improves cluster quality.

Similarly, we normalize the rows corresponding to data item

features of all nonsymmetric coupled matrices to unit norm.

We then normalize the coupled feature matrices weighted by

hyperparameter coefficients and tensor matricized along the

clustering mode together. Intuitively, this is akin to projecting

all data items onto a unit hypersphere. The pseudocode of

the aforementioned pre-processing normalization steps can be

seen in lines 1 to 6 of Algorithm 1.

The rows of the nonnegative CP factors A1,A2,A3 com-

puted as part of eqs. (1) to (4) can be implicitly considered

as soft clustering assignments corresponding to each of the

r columns. These can be used to extract hard clustering

assignments by selecting the largest element per data item

row of the scaled factor matrix along the mode of interest,

as seen in line 16 of Algorithm 1. Note that we select cluster

assignments from the factor matrix along a single given mode.

This is not to be confused with co-clustering or multi-way

clustering as is done in work such as [6].

When making cluster assignments, we normalize the factor

columns along the nonclustering modes and shift the resulting

column weights to the clustering mode’s factor. For exam-

ple, when clustering along the first mode we set A1 =
A1D1D2D3, where Di is the diagonal matrix containing the

column weights of the mode-i factor matrix. This is a higher-

order analog of a post-processing normalization step used in

NMF clustering. The pseudocode of this rescaling process can

be seen in lines 14 and 15 of Algorithm 1.

B. Topic Modeling via NCMTF

We extract topic modeling results from the NCMTF factors

similar to NMF. Each column of a factor matrix along a given

mode corresponds to a “topic” of that mode. We select the x

largest elements from the factor matrix column corresponding

to that topic as seen in lines 17 to 19 of Algorithm 1. Repeating

this along each mode for a given “topic” (factor column index)

results in the top elements for a “topic” which when taken



together provide insight into the nature of that topic. Note

that as NCMTF yields additional factors relative to NMF the

resulting topic modeling is more informative.

Algorithm 1: Joint-NCMTF with Auto-Coupling

Input : X ∈ R
I1×I2×I3 ,S1 ∈ R

I2×I2 ,M1 ∈
R

I2×J , α1, α2, β. k, number of clusters and

topic models. topn, number of top features.

Output: A1 ∈ R
I1×k, Â1 ∈ R

I1×k,A2 ∈
R

I2×k,A3 ∈ R
I3×k,V1 ∈ R

F1×k

Pre-Processing Step:

/* normalize data item features */

1 X(1) = normr(X(1))
/* enforce auto-coupling */

2 M1 =
[

normr(M1)|normr(collapse(X , 3))
]

/* normalize data item features */

3

[√
α1M1|X(1)

]

= normr(
[√

α1M1|X(1)

]

)
/* normalize adjacency matrix */

4 S(S > 0) = 1
5 D = degree(graph(S))

6 S = D
−1

2 SD
−1

2

Core Algorithm:

7 while not converged do

8 minV1⩾0∥
√
α1M1 −

√
α1A1V

T
1 ∥2F

9 minA2⩾0∥X(2) −A2(A3 ⊙A1)
T ∥2F

10 minA3⩾0∥X(3) −A3(A2 ⊙A1)
T ∥2F

11 min
Â1⩾0

∥

∥

∥

∥

[√
α2A1√
βI1

]

Â
T

1 −
[√

α2S
T
1√

βAT
1

]
∥

∥

∥

∥

2

F

12 minA1⩾0

∥

∥

∥

∥

∥

∥

∥

∥

∥









A3 ⊙A2√
α1V1√
α2Â1√
βI1









A
T
1 −











X T
(1)√

α1M
T
1√

α2S
T
1√

βÂ
T

1











∥

∥

∥

∥

∥

∥

∥

∥

∥

2

F
13 end

Post-Processing Step:

/* scale clustering factor */

14 D = diag(vecnorm(

[

A3 ⊙A2√
α1V1

]

))

15 A1 = A1 ∗D
/* extract cluster assignments */

16 [−, cluster-assignments] = max(A1, [], 2)
/* extract topic modeling results */

17 [−, document-index] = maxk(A1, topn)
18 [−, word-index] = maxk(A2, topn)
19 [−, author-index] = maxk(A3, topn)

V. EXPERIMENTS

A. Evaluation Metrics

Pairwise F1-Score (PWF1): The F1-score is an external

metric commonly used to evaluate the quality of cluster results.

We use a pairwise variant of the F1-score originally developed

to measure the performance of Joint-NMF [12] referred to

as the Pairwise F1-score. We define the Pairwise F1-score as

follows. Each of the
n(n−1)

2 pairs of data items fall into one of

four categories: True Positive (TP), True Negative (TN), False

Positive (FP), and False Negative (FN) as defined in [12].

Based upon this, the Pairwise F1-Score is defined as follows:

PWF1 =
2#TP

2#TP +#FN +#FP
(5)

We refer the reader to [25] for a comprehensive overview of

other internal clustering metrics.

Silhouette Index (S-Index): The Silhouette Index is a com-

monly used internal metric for evaluating cluster separation

based upon pairwise distances of inner and outer cluster

assignments. Each point is assigned a “Silhouette” score:

b(i)− a(i)

max(a(i), b(i))
,

where a(i) is the average distance of a point i to all other

points in its assigned cluster, whilst b(i) is the average distance

of point i to points in the next closest cluster. Its range is

between -1 to 1, with 1 representing perfect cluster separation

and -1 representing the opposite thereof. We take each point’s

Silhouette score and average them together to yield a single

score, which we refer to as “S-Index” from here on.

B. Datasets

1) Synthetic Datasets: To experiment with the performance

of the proposed approaches for a variety of problem structures,

we generate synthetic datasets with different noise levels and

types. Each generated synthetic dataset consists of a third-

order tensor and a coupled symmetric adjacency matrix along

the first mode. We denote the resulting tensor and matrix

respectively as X ∈ R
I1×I2×I3 and S ∈ R

I1×I1 . We form each

synthetic dataset from 3 factor matrices A1 ∈ R
I1×r,A2 ∈

R
I2×r,A3 ∈ R

I3×r. Each row of A1 and A3 are random one-

hot vectors, i.e. all elements equal to zero except one element

equal to 1. This represents the ground truth cluster assignment

of each data item. A2 is a random column normalized matrix.

We then set X = JA1,A2,A3K and S = A1A
T
1 .

We introduced 5 types of noise into X and S. Coupled

symmetric matrix connection removal (sym-rm-noise): Sym-

metrically remove x percent of entries from S, where x is

the noise level. Coupled symmetric matrix perturbation (sym-

noise): Symmetrically add (1−x2) nonzero entries to S, where

x is the noise level. All nonzero entries of S are then set to

1. This type of noise simulates noisy adjacency connections

between data items in S. Block perturbation (perturb-block-

noise): Adds uniform noise to the nonzero elements of X .

Does not increase the density of the problem. Noise level

scaled to same norm as X and then multiplied by noise

level. Dense perturbation (perturb-dense-noise): Adds uniform

noise to each entry of X . Makes problem dense. Noise level

scaled to same norm as X and then multiplied by noise level.

Sparsification (sparsify-noise): Sparsifies problem by zeroing

x percent of entries from X , where x is the noise level.

Unless stated otherwise, all synthetic experiments have a

true factor rank, i.e. the number of columns in each factor,

r = 6 and set sym-noise=.05, sym-rm-noise=.9, perturb-block-

noise=0, perturb-dense-noise=.5, and sparsify-noise=.9.



Model Parameters

Method X M1 S1 α1 α2 β

K-Means I1 × I2 - - - - -

NMF I1 × I2 - - 0 0 0

Joint-NMF I1 × I2 - I1 × I1 0 1 1

NMF-MOD I1 × I2 I1 × I3 - 1 0 0

CP I1 × I2 × I3 - - 0 0 0

Joint-NCMTF I1 × I2 × I3 I1 × F1 I1 × I1 1 1 1

TABLE I: Problem formulation comparison of surveyed meth-

ods. The algorithms for Joint-NCMTF and NMF-MOD are

proposed as part of this work. Note that NMF-MOD can be

considered as fitting into the framework proposed by [32].

All methods, except K-Means, fit within the Joint-NCMTF

framework. In subsequent experiments, F1 = I2 when auto-

coupling tensor based methods.

2) AMiner: Real-world experiments were run on subsets of

the ArnetMiner (AMiner) [34] academic graph. A set of key-

words such as [‘mechanical engineer’, ‘economy’, ‘politic’]

were selected. All documents without these substrings in either

the keyword or fos (field of study) were filtered out. All

documents without title, abstract, author, or venue ids were

filtered out. Standard preprocessing was performed, dropping

all words above or below a certain frequency along with

stop word removal to form Term Frequency-Inverse Document

Frequency (TF-IDF) vectors. Stemming was not performed.

We then selected the top x documents in terms of citation rela-

tionship count, pruned all authors with less than 3 documents,

and used the resulting corpus to populate (document×word×
author) tensor and corresponding (document × document)
citation relationship adjacency matrix.

3) PatentsView: Real-world experiments were run on sub-

sets of the PatentsView dataset [36] which consists of over

12 million patents with information such as title, abstract,

inventors, assignee, and citation. Each patent belongs to one

of 7 different categories and one of 38 different subcategories.

Each patent has at least one assignee, which is the entity to

which the patent was assigned to. Generally each assignee was

a corporation. We filtered out the top patents for the selected

subcategory-assignee pair in terms of citation relationships.

We then applied similar preprocessing steps as on the Aminer

dataset to the titles and abstracts of the selected patents and

used the results to form TF-IDF vectors. The resulting TF-IDF

vectors were then used to form a (patent×words×inventor)
tensor and corresponding (patent× patent) citation relation-

ship adjacency matrix.

C. Quantitative Results

We compare the proposed Joint-NCMTF algorithm against

several popular state-of-the-art baselines listed in Table I.

Unless otherwise stated, all experiments were run with α1 =
||X ||2

F

16||M1||2F
, α2 =

||X ||2
F

||S||2
F

and β = 0.25. The performance

of Joint-NCMTF is sensitive to the setting of α2 and β.

Rigorous hyperparameter tuning is recommended to yield the

best performance of Joint-NCMTF. Deriving default α2 and β

with rigorous justification is an avenue of future research.

Figures 2 to 4 show the comparisons between the surveyed

methods for the aforementioned datasets and metrics. The

center marker of all line plots is the average over 5 random

initializations, whilst the lower and upper bars each respec-

tively denote the minimum and maximum. To account for

factor sparsity, in Figures 3 and 4 we select the top 25%

of data items in terms of clustering factor column weight to

evaluate the clustering metrics. In the instance that a method

assigns less than 25% of data items to clusters we set the score

corresponding to the method to zero.

Several consistent trends between the surveyed methods

were observed across the experiments as seen in, Figures 2

to 4. The tensor based methods consistently outperform the

matrix based methods in terms of the external PWF1 metric,

particularly in the case of overfactoring. This indicates that the

tensor based methods perform significantly better at ground

truth retrieval than the matrix based methods.

For the internal S-Index, we evaluated all methods on

two different validation matrices respectively consisting

of the tensor X collapsed along modes 3 and 2, i.e.

collapse(X , 3) ∈ R
I1×I2 and collapse(X , 2) ∈ R

I1×I3 . For

the real-world Aminer and PatentsView datasets these resulted

in (documents×words) and (documents×authors) valida-

tion matrices. Note that as the (documents× words) matrix

is the X matrix used by the matrix based methods, we assume

that the matrix based methods will yield “good” clusters

with regards to internal metrics evaluated on this validation

matrix. Conversely, the matrix based approaches, with the

exception of NMF-MOD, do not explicitly incorporate the

author information. As a result we expect the matrix based

methods to yield comparatively worse clusters with regards

to internal metrics evaluated on the (documents× authors)
validation matrix. Figures 2b, 2c, 3b, 3c, 4d and 4e provide

empirical evidence supporting these hypotheses.

We evaluate the impact of auto-coupling on the clustering

results by comparing the tensor based methods with and with-

out the auto-coupling parameter set to 0. In all experiments,

we auto-coupled the collapse(X , 3) matrix to the tensor based

formulations. We generally observed that auto-coupling caused

the tensor based methods to perform more similarly to the

matrix based methods.

D. Qualitative Results

Table II shows sample topics yielded by NMF and Joint-

NCMTF on [‘mechanical engineer’, ‘economy’, ‘politic’]

Aminer subset for r = 16. Based upon the top documents

and words, both topics clearly pertain to wall climbing robots

and presumably contain documents from the ‘mechanical

engineer’ keyword. Table III shows sample topics yielded

by NMF and Joint-NCMTF on [‘Transportation’,‘Electrical

Devices’,‘Electrical Lighting’,‘Information Storage’,‘Motors

& Engines + Parts’,‘Computer Hardware & Software’] sub-

category PatentsView dataset for r = 12 with no assignee in-

formation. The top documents and vocabulary indicate that the
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Fig. 2: External and Internal metrics for all points in synthetic dataset with sym-noise=.05, sym-rm-noise=.9, perturb-block-

noise=0, perturb-dense-noise=.5, and sparsify-noise=.9. True r-value is r = 6.
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i.e. documents× words
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Fig. 3: External and internal metrics for top 25% of data items of [‘mechanical engineer’, ‘economy’, ‘politic’] Aminer subset.

Documents

A wall-climbing robot without any active suction mechanisms

A miniature ceiling walking robot with flat tacky elastomeric footpads

Development of Wall Climbing Robot System by Using Impeller Type Adhesion

Mechanism

Geckobot: a Gecko Inspired Climbing Robot using Elastomer Adhesives

Mobility of an in-pipe robot with screw drive mechanism inside curved pipes

Words Authors

robot - - - -

mechanism - - - -

wall - - - -

climbing - - - -

control - - - -

(a) NMF

Documents

A miniature ceiling walking robot with flat tacky elastomeric footpads

Tankbot: a miniature, peeling based climber on rough and smooth surfaces

Geckobot: a Gecko Inspired Climbing Robot using Elastomer Adhesives

Waalbot: An Agile Small-Scale Wall Climbing Robot Utilizing Pressure Sensi-

tive Adhesives

Rotating Magnetic Miniature Swimming Robots With Multiple Flexible Flagella

Words Authors

robot Metin Sitti

surfaces Ozgur Unver

climbing Shugen Ma

smooth Houxiang Zhang

design Guanghua Zong

(b) Joint-NCMTF

TABLE II: Sample topics yielded by NMF and Joint-CMTF on [‘mechanical engineer’, ‘economy’, ‘politic’] Aminer dataset

for r = 16. For this topic, we manually verified that all top authors were mechanical engineers and/or roboticists.

cluster corresponding to this topic pertains to LED lighting and

presumably belongs to the ‘Electrical Lighting’ subcategory.

Each of the topics found by both NMF and Joint-NCMTF

were highly interpretable and appeared to belong to one of the

6 subcategories used to form the dataset. For both datasets we

manually verified that all top authors were associated with the

inferred topic. NMF and Joint-CMTF yielded similar topics

for all sampled datasets. Joint-NCMTF provides an additional

dimension of insight to the topic relative to NMF by finding

top authors in addition to top documents and words. This

additional dimension of information is a benefit of the tensor

based formulation.
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(a) PWF1 for ground truth categories
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(b) PWF1 for ground truth assignees
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(c) PWF1 for ground truth
category-assignee pairs
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(d) S-Index on collapse(X , 3),
i.e. documents× words
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Fig. 4: External and internal metric scores for top 25% of PatentsView subset data items (Figures 4a to 4e) along with the

cluster sizes for all data items (Figure 4f). Patentsview subset formed from top 25 patents in terms of citation relationships

for (Transportation) and (Motors & Engines + Parts) categories selected from 6 largest automobile producers. The proposed

Joint-NCMTF without auto-coupling performs best of all surveyed methods for detecting ground truth cluster assignments as

seen in Figures 4a to 4c whilst Joint-NCMTF with auto-coupling performs more similarly to the matrix based methods. The

tensor based methods without auto-coupling yield a disproportionately size cluster as seen in Figure 4f. This is caused by

the extreme sparsity of the tensor formulation resulting in factor matrix rows consisting of all zeros. We by default assign

the data item corresponding to a zero row to the first cluster. Note that auto-coupling alleviates this thereby stabilizing the

Joint-NCMTF results.

Documents

LED light with thermoelectric generator

Systems and methods for generating and modulating illumination conditions

Continuity maintaining biasing member

Multicolored LED lighting method and apparatus

Methods and apparatus for providing power to lighting devices

Words Authors

light - - - -

housing - - - -

fluorescent - - - -

ledbased - - - -

lighting - - - -

(a) NMF

Documents

Systems and methods for generating and modulating illumination conditions

Electric shock resistant L.E.D. based light

Methods and apparatus for controlling devices in a networked lighting system

LED-based light having rapidly oscillating LEDs

LED lighting apparatus with swivel connection

Words Authors

light Trevor Ehret

housing Craig Mackiewicz

fluorescent Christopher P. Natoli

ledbased John Ivey

fixture David L. Simon

(b) Joint-NCMTF

TABLE III: Sample topics yielded by NMF and Joint-NCMTF on [‘Transportation’,‘Electrical Devices’,‘Electrical Light-

ing’,‘Information Storage’,‘Motors & Engines + Parts’,‘Computer Hardware & Software’] PatentsView subset dataset for

r = 12 with no assignee information and no stemming. Note that both topics appear to pertain to LED lighting. NMF and

Joint-NCMTF yielded similar topics. Joint-NCMTF provides an additional dimension of insight to the topic relative to NMF

by finding top authors in addition to top documents and words. We manually verified that for this topic all top authors were

associated with electrical and/or lighting based patents.



VI. DISCUSSION AND FUTURE WORK

Joint-NCMTF is a powerful data analysis tool capable of

handling datasets posed as coupled matrices and tensors whilst

preserving the desirable clustering and topic modeling prop-

erties of NMF. Avenues of future research include deriving

gradient methods, analyzing trade-offs of tensor formulations,

implementing distributed variants, and providing rigorous jus-

tification of default hyperparameters for Joint-NCMTF.
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