FIST-HOSVD: Fused In-place Sequentially Truncated
Higher Order Singular Value Decomposition

Benjamin Cobb
Georgia Institute of Technology
Atlanta, GA, USA
bcobb33@gatech.edu

Eric Phipps
Sandia National Laboratories
Albuquerque, NM, USA
etphipp@sandia.gov

ABSTRACT

In this paper, several novel methods of improving the memory lo-
cality of the Sequentially Truncated Higher Order Singular Value
Decomposition (ST-HOSVD) algorithm for computing the Tucker
decomposition are presented. We show how the two primary com-
putational kernels of the ST-HOSVD can be fused together into a
single kernel to significantly improve memory locality. We then
extend matrix tiling techniques to tensors to further improve cache
utilization. This block-based approach is then coupled with a novel
in-place transpose algorithm to drastically reduce the memory re-
quirements of the algorithm by overwriting the original tensor with
the result. Our approach’s effectiveness is demonstrated by compar-
ing the multi-threaded performance of our optimized ST-HOSVD
algorithm to TuckerMP], a state-of-the-art ST-HOSVD implemen-
tation, in compressing two combustion simulation datasets. We
demonstrate up to ~ 135X reduction in auxiliary memory consump-
tion thereby increasing the problem size that can be computed
for a given memory allocation by up to ~ 3%, whilst maintaining
comparable runtime performance.

CCS CONCEPTS

« Computing methodologies — Shared memory algorithms;
Unsupervised learning.

KEYWORDS

tucker decomposition, kernel fusion, cache blocking, in-place, mem-
ory efficient, reduced memory high-water mark, data compression

ACM Reference Format:
Benjamin Cobb, Hemanth Kolla, Eric Phipps, and Umit V. Catalyiirek. 2022.
FIST-HOSVD: Fused In-place Sequentially Truncated Higher Order Singular
Value Decomposition. In Proceedings of Platform for Advanced Scientific
Computing (PASC °22). ACM, New York, NY, USA, 11 pages. https://doi.org/
10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PASC °22, Basel, Switzerland,

© 2022 ACM.

ACM ISBN 978-x-xxxx-Xxxx-X/YY/MM

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Hemanth Kolla
Sandia National Laboratories
Livermore, CA, USA
hnkolla@sandia.gov

Umit V. Catalyiirek
Georgia Institute of Technology
Atlanta, GA, USA
umit@gatech.edu

1 INTRODUCTION

The Tucker decomposition [26] is a higher order generalization
of the Singular Value Decomposition (SVD) and leverages a multi-
dimensional dataset’s latent structure to decompose a tensor into
a core tensor and series of factor matrices corresponding to each
dimension of the dataset. For extending rank truncation to tensors,
the Sequentially Truncated Higher Order Singular Value Decompo-
sition (ST-HOSVD) is an efficient method for computing low-rank
Tucker tensor decompositions and is effective at large scale data
compression [2-4, 11, 12]. Multiplying the core tensor along each
dimension by the corresponding factor matrix recovers the original
tensor or, in the case of low-rank Tucker, an approximation of the
original tensor. Due to this, the Tucker decomposition has found
broad applications in fields such as bioinformatics, psychometrics,
computer vision, and signal processing that deal with high dimen-
sional data [19, 23, 26, 28]. The ST-HOSVD algorithm is arguably
the fastest method to compute to the Tucker decomposition due to
its unique ability to iteratively truncate the tensor whilst computing
a low-rank Tucker approximation, thereby saving on FLOPs [27].

A key constraint limiting the performance, and even feasibility, of
computing the Tucker decomposition is memory consumption. The
ST-HOSVD requires a considerable amount of temporary memory
in addition to the input tensor, thus the available memory severely
limits the problem size that can be handled. We build upon the ex-
isting ST-HOSVD algorithm by introducing several optimizations
that significantly improve its memory locality and overall memory
footprint. We focus on optimizing the two kernels that are the com-
putational bottlenecks of the ST-HOSVD algorithm: 1) the Tensor
Times Matrix (TTM) kernel which represents multiplication of a
tensor with a matrix along a specific dimension, and 2) the Gram
matrix computation which involves unfolding the tensor along a
dimension and multiplying the resulting matrix with its transpose.
Our primary contributions are as follows:

e We demonstrate how the TTM and Gram kernels can be
combined within the context of the ST-HOSVD algorithm,
i.e., you can compute the Gram matrix of the next dimension
whilst computing the TTM of the current dimension.

e We utilize the observation that permuting the columns of a
tensor’s matricization does not change the corresponding
Gram matrix to extend matrix tiling and cache blocking
techniques to tensors.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

PASC ’22, Basel, Switzerland,

e We couple this cache blocking approach with a novel in-place
transpose algorithm to process several cache blocks at a time,
overwriting the original tensor with their partial TTM result.
This allows us to avoid allocating intermediate TTM results,
thereby drastically reducing the memory high-water mark
of the algorithm.

In this paper we describe these optimizations to the ST-HOSVD
algorithm and implementations of these for advanced HPC archi-
tectures. We employ our optimized algorithm for performing com-
pression of two representative combustion datasets:

(1) Homogeneous Charge Compression Ignition (HCCI) simu-
lation in a spatially 2D domain (resulting in a fourth order
tensor)

(2) Statistically Planar (SP) turbulent flame simulation in a spa-
tially 3D domain (fifth order tensor)

Combustion simulations, like many other scientific applications
in the exascale era, generate large volumes of data and compression
is necessary to effectively manage and analyze these datasets.

2 RELATED WORK

Due to their usefulness, a wide variety of softwares and libraries
have been created to provide implementations of tensor decom-
positions. In our work, we implement ST-HOSVD within the Gen-
Ten [20] package, which provides high performance tensor decom-
position capabilities that are portable across emerging CPU and
GPU architectures. It leverages Kokkos [7], which is a C++ perfor-
mance portability library, to enable a single algorithmic implemen-
tation to be performant and portable across a wide variety of shared
memory parallel computing architectures. Other state-of-the-art
studies of ST-HOSVD and related calculations are summarized be-
low.

TuckerMPI [3] is a C++ software package that utilizes MPI to
implement ST-HOSVD. TuckerMPI’s goal is to provide a frame-
work for parallelizing massive tensor computations across multiple
CPU-based nodes. TuckerMPI provides the user with the ability to
set the dimensions of the processor grid upon which the tensor is
block partitioned. Recently, TuckerMPI implemented a modified
variant of the ST-HOSVD that leverages the QR decomposition to
increase the numerical stability of the algorithm [17]. TuckerMPI
has been shown to effectively compute the ST-HOSVD of datasets
up to 6.7 TB, resulting in compression ratios up to 4 x 10%. Our
baseline ST-HOSVD implementation was closely based off Tuck-
erMPL As shown in the experiments section, we benchmark our
implementations against TuckerMPI in a shared memory setting.

The Matlab Tensor Toolbox (TTB) [13] is a popular tensor soft-
ware package in the field of tensor decompositions. It currently
utilizes the ST-HOSVD to compute the Tucker decomposition. The
TTB is ideal for fast prototyping and experimentation of tensor com-
putations. We used the TTB to prototype and verify the correctness
of our approaches.

Choi et al. [6] presents a distributed multi-GPU implementation
of the Tucker algorithm. The optimizations for preventing mem-
ory movement that they present are in some ways similar to our
optimizations. For example, they present a method they refer to
as tensor reuse that transposes sub-tensor blocks to prepare the
tensor for the next iteration of the ST-HOSVD algorithm to avoid

Benjamin Cobb, Hemanth Kolla, Eric Phipps, and Umit V. Catalyiirek

communication. Whilst this shares a similar intuition to our tensor
tiling strategy, we stress that their optimizations are different from
the ones described in subsequent sections. The key difference is
that our approach computes both the TTM and Gram in a single
step, whilst Choi et al. compute them separately.

There are several existing approaches in the literature that aim
to reduce the memory consumption of computing the Tucker de-
composition, particularly in the sparse case due to the intermediate
data explosion that arises when instantiating portions of a large,
sparse tensor [14, 18]. However, to the best of our knowledge, our
approach is the first to do the computation almost entirely in-place
by overwriting the original tensor with the result, thereby not re-
quiring a large memory allocation to hold the resulting Tucker
decomposition’s core tensor. This marks the biggest difference be-
tween our in-place algorithm and existing methods for computing
the Tucker decomposition. For clarity, here we state our definition
of in-place within the context of this paper. We define in-place as
asymptotically requiring significantly less memory than the origi-
nal tensor size by overwriting the original tensor with the result.
This deviates slightly from the traditional definition of in-place
in that it asymptotically requires more than a constant amount of
memory to compute the result. We see extending the approaches
described in this paper to only requiring a constant amount of
memory as an avenue of future work.

3 FORMAL DEFINITION AND NOTATION

The ST-HOSVD algorithm primarily relies upon two tensor kernels,
the TTM and Gram kernels. We thus first define them and provide
insight into their computation before moving onto the ST-HOSVD
algorithm itself. Both the TTM and Gram kernels can be viewed as
a series of matrix multiplications by first matricizing the tensor. To
fully understand tensor matricization it is helpful to first define the
concept of tensor fibers as follows:

DEFINITION 1. Given that X is a tensor of order N with dimension
sizes: I X - - - X Iy, the mode-n fibers are the set of vectors resulting
from holding all but the n’th mode constant. In other words, the mode-
n fiber Vi, i 1inetein = Kigsoosino1.5ines,..in > Where @ is used to
denote all elements along that dimension.

DEFINITION 2. Given a tensor X, then X(n) denotes the mode-n
matricization of X and is a matrix whose columns are the mode-n
tensor fibers of X in column major order.

3.1 Tensor Times Matrix kernel (TTM)
The formal definition of TTM is represented as follows:
DEFINITION 3. Given that X is a tensor of order N with dimension

sizes: I1 X - - - X Iy and U is a matrix of size] X I,, then X, denotes
a TTM along the n’th dimension (mode) of X defined by

Y=Xx, U = J/(n) = 7/(/\’(,,) (1)
where M is the resulting tensor with dimensions: I; X --- X In_1 X
J X Iy X -+ X IN. Defining I* =]_[ﬁil I, 1% = f—n the resulting
asymptotic complexity to calculate Y,y is O(JILI®).

Figure 1 shows an example of TTM along mode-3 of a 4’th order
tensor. Our initial implementation of the TTM kernel is heavily

Fused in-place sequentially truncated higher order singular value decomposition

1.)Matricize tensor along given mode

ST wl [] sIdal[] 10 ol
= T = T s T

20 30 40 20 30 40 20 30 % 40

¢ 2.)Individual submatrix multiplication

3
L
30[= SOI

40

—
SOI 3.)Reform tensor
—

s
40 15

Figure 1: Tensor Times Matrix computation of 30 X 40 X 20 X 3
tensor with 15 X 20 matrix along mode-3.

based upon the work of Ballard et al. [3] and Li et al. [16]. Two
values that will be helpful in the following discussions are:

N n—1
= ﬂ I, IS= ﬂ I ®)
r=1

r=n+l1

Assuming the entries of X are stored in column-major order
as a contiguous 1D array, i.e., the mode-1 fibers are contiguous
in memory, then the matrix resulting from the matricization of
X consists of I, row-major submatrices that are contiguous in
memory, each with I,, rows and I,f columns for each 1 < n < N.
Figure 1 provides a simple example of the mode-3 TTM on a 4'th
order tensor. Keep in mind that the submatrices are contiguous and
in row-major order. Taking these arrangements of the submatrices
into account, the submatrix multiplications may be done via a call
to a general matrix-matrix multiplication (GEMM) kernel. This
grants access to the multitude of highly optimized pre-existing
linear algebra libraries, such as BLAS [1]. Furthermore, due to the
fact that the submatrix multiplications involve separate contiguous
sections of the input and output tensors, these GEMM calls can be
executed in parallel. Our baseline ST-HOSVD utilizes this approach.

3.2 Gram

The formal definition of the Gram kernel is as follows:

DEFINITION 4. Given that X and X(,) € RInXI® s gs previously

defined, then the mode-n Gram matrix, S € RI»*In js given by:

S= X(n)X(Tn) with asymptotic complexity O(I2I®).

Based upon this, depending on the values of J and I, relative to
each other, the TTM and Gram matrix kernel require asymptoti-
cally comparable amounts of work. Similar to the TTM kernel, the
Gram kernel can be viewed as a series of row major matrix-matrix
multiplications, the results of which are reduced together to form
the final symmetric Gram matrix. Figure 2 shows an example of
computing the Gram matrix along mode-n of a tensor.

3.3 ST-HOSVD

Algorithm 1 shows the ST-HOSVD pseudocode and Figure 3 shows
a corresponding example of the Tucker decomposition. As discussed
previously, the computational cost of the ST-HOSVD algorithm is

PASC ’22, Basel, Switzerland,

Reduce

- l” ’ v ’ - Inl
In

Figure 2: Gram matrix computation.

[~ 4({U 131@\/\
4({ ST-HOSVD = FARE

- 13

>) 20][]

T o [| 5

H

8

15

Figure 3: Tucker decomposition example of 3’rd order 40 X
30 X 20 tensor. The small 13 X 8 X 15 tensor in the center of the
matrices is referred to as the core tensor. The surrounding
matrices are generally referred to as factor matrices.

dominated by the Gram matrix kernel (Line 3) and the TTM kernel
(Line 7) [3]. Thus, optimizing these two kernels is integral to opti-
mizing the ST-HOSVD algorithm as a whole. Similarly, the memory
consumption of the ST-HOSVD is dominated by the intermediate
TTM results. In the worst case the ST-HOSVD must allocate 3x
the tensor size in memory. This occurs when there is no trunca-
tion along the first two dimensions, generally due to either low
error-tolerance or high tensor rank. The memory consumption of
the ST-HOSVD is thus: O(I%,4, + [T, I), where Inqy is the size
of the largest dimension. The I2,,, term is the memory required
to compute the largest Gram matrix and store the largest factor
matrix. The Hf]: 1 Ir term is the memory necessary to store the
core tensor and TTM result, which is the core tensor of the next
iteration. In practice this term almost always constitutes the bulk of
the ST-HOSVD’s memory consumption as seen in the experimental
results section. The goal of this paper is to drop the]_[f[:1 I term
from the ST-HOSVD’s memory consumption O-asymptotic bound.

Algorithm 1: ST-HOSVD

Data: Tensor X, accuracy bound e
Result: Tensor core G , factor matrices F
1 G « X; /" Initialize G
2 forn=1:Ndo

3 S «— gng,{; Gram matrix

4 A eigenvalues in descending order, V' corresponding eigenvectors
5 [A, V] « eig(S)

6 Up «— V(;,1:Ry); /" Ry, is smallest value that satisfies e

7 G — G Xy UL; /" TTM

8 Fe—U;...Un
9 return G, F

PASC ’22, Basel, Switzerland,

4 OPTIMIZATIONS

4.1 Kernel Fusion

The first optimization that we employed in improving the ST-
HOSVD algorithm relies upon the observation that each TTM sub-
matrix multiplication forms a single, contiguous row of the next
dimension’s matricized tensor used to compute the Gram matrix.
Written formally:

>

DEFINITION 5. Given X(y), divide X(p)’s submatrices into I{:l
groups, each with I,,1 submatrices. Denote the resulting partition as
sn. Let spi, j] denote the ith submatrix in the jth submatrix group of
X(n)- Accessed linearly, sy[i, j] is the (i+(j—1) * In+1)"th submatrix
of X(n)- Additionally, letvec(s[i, j]) € RIn+1* (L7 /Tn1) denote the row
vector containing the entries of sy[i, j1, X(n) [j] be the j’th submatrix
of X(n), and X(,141) 71 (i, :) denote all the entries in the i’th row of
the j'th submatrix of X(pi1). Then X(p11)[j1(,:) = vec(sn[i, j])-

Figure 4 gives an illustration of this. The benefit of viewing
the TTM and Gram in this manner is that it becomes readily ap-
parent that after computing the mode-n TTM we may immedi-
ately compute a portion of the mode-(n + 1) Gram matrix. To
do so, compute partial TTM with s, [:, j], where s,[:, j] is all the
matrices in the j’th submatrix group of X(,). Logically concate-
nate vec of resulting submatrices to form X(,,,1)[j]. Then compute
(X(na1)) Ky DT

For certain problem sizes, this entails that the entries involved in
both computations may remain in cache for the entire computation.
Regardless of dimension size, the TTM and Gram matrix may thus
be fused together into a single kernel. It is well know that kernel
fusion significantly improves the memory locality of computation.
This is especially beneficial in the case of GPU applications [8, 24].

Tt

I

Jn Jn - Jn

/ I< % Jn

Int1

Figure 4: Example of fusing the result of I;,,; mode-I, TTM
submatrices, each € J, X I where J, is the number of rows
of the input matrix, into a single submatrix used to compute
the I, gram matrix.

Once the TTM and Gram kernels have been fused together, the
ST-HOSVD algorithm may be modified to utilize the fused kernel.
Essentially the first Gram and last TTM remain the same, whilst the
remaining kernels can be fused. This modification to the ST-HOSVD
can be seen in Algorithm 3.

As is, this process restricts us to processing to dimensions se-
quentially in-order. However, this restriction can be removed by
the data packing technique described in the subsequent section.

Benjamin Cobb, Hemanth Kolla, Eric Phipps, and Umit V. Catalyiirek

4.2 Tensor Tiling

Matrix tiling, also referred to as matrix blocking, is a common
method of improving cache utilization in matrix multiplication
[1, 9, 15]. Due to the fact that we view both the TTM and Gram
kernels as a series of matrix multiplications it is logical to extend
matrix tiling techniques to tensors.

In the traditional approach, the tensor fibers of each dimension
except the first are strided in memory. Thus, in order to explicitly
form a given mode’s fiber, a series of strided accesses is required.
For architectural reasons, strided memory accesses on single ele-
ments are significantly slower than contiguous accesses and should
generally be avoided. The advantage of the approach presented
in Ballard et al. [3] is that it avoids strided memory accesses by
only dealing with the contiguous row-major submatrices in the
tensor’s matricization at each iteration. The disadvantage of this
approach is that for later dimensions the submatrices tend to be
skinny with one dimension being much larger than the other. Many
GEMM implementations are not primarily optimized for this case
[21]. Our approach aims to alleviate this problem by packing the
tensor entries into cache friendly blocks at every iteration of the
ST-HOSVD algorithm. This causes the fibers corresponding to the
dimension of the current iteration to be contiguous in memory. As
a result, the layout of the tensor evolves in memory over the course
of the computation. In conjunction with the kernel fusion described
in the previous section, this leads to significantly improved memory
locality, the benefits of which are shown in the experimental results
section.

LT

/ pack In41 columns together
I H LN sy Ty JJ RSNy
LN

A—

Ins1 Ins1 Jn Ins1

Figure 5: Fusing the TTM and Gram steps of the ST-HOSVD
algorithm. Note that the ordering of the tensor entries change
at every iteration to prepare it for the next iteration.

We start by assuming that the tensor begins as column-major
(first dimension contiguous) and that the tensor dimensions are
processed sequentially in order starting at 1. We can process the
dimensions out of order, but it significantly complicates the expla-
nation, so we leave it for future work. For each dimension of the
tensor, the current mode’s fibers are contiguous and packed into
blocks with fibers that are I offset in memory. In other words, let
X(y) be as previously defined in Definition 2 and s, as in Definition

5.LetV; € RIn* (I7#In+1) be the matrix resulting from concatenating
snl: jl together. Then V;(:,i: (Iy) : (Iy * (In41 — 1) + i) columns
of V; are packed together into a contiguous cache block € RInXIns1
where V(i : (I7) : (I * (In41 — 1) +i) denotes each column vector
offset by a stride of I;; from the i’th column of V;. This process is
repeated for each i and j, subjectto1 < i <Ipy;and1 < j < %

Fused in-place sequentially truncated higher order singular value decomposition

Each block then undergoes fused multiplication, transposing
the result by saving it row-major in memory to make the next
dimension’s fibers contiguous in memory. Figure 5 gives a visual
representation of this process. This is repeated until the last di-
mension, wherein a single TTM with the truncated eigenvectors
of the last Gram matrix is performed along the last dimension to
complete the algorithm. This yields the same Tucker decomposition
as the traditional ST-HOSVD algorithm with the caveat that the
core entries are rearranged in memory depending on the order in
which the dimensions were processed. This slightly complicates
the process by which the original tensor is recovered, as the entries
must be unpacked.

This process can also be viewed as transposing the submatrices
formed from the first two dimensions of a special 3’rd order re-
shaped tensor as seen later on in Figure 6 (a). Here X € 1 X - - - X Iy
is reshaped such that I;; contiguous mode-n fibers form the first
dimension, the second dimension is I,+1, and the third dimension is
I{%' In the following algorithms, we denote this as: Xj. Here each
I,, rows of the submatrices formed from the first two dimensions
of X, constitute a block as described in the previous section. Each
block will be multiplied by the same TTM matrix of size J, X I,
(first J, eigenvectors of mode-n Gram matrix). The resulting row-
major block of size J, X I+1 will then immediately be multiplied by
its transpose on the left to form a symmetric Gram matrix of size
(In+1 X In+1). These Gram matrices are then reduced together to
form the mode-(n+ 1) Gram matrix. The generalized pseudocode of
this process is shown in Algorithm 2. We refer to the algorithm that
uses this kernel as the Fused + packed ST-HOSVD (FaST-HOSVD),
as can be seen in Algorithm 3.

In the current implementation, each block is (I X I+1) for mode-
n, but could be (I, X I;), where I; is an arbitrary dimension of the
tensor. Viewing the tensor in this manner helps relate this approach
to existing matrix blocking techniques and provides intuition as
to why it works. This reshaping is key to facilitating the in-place
optimization described in the next section.

Algorithm 2: Fused + Packed Kernel

Data: Tensor X, mode n, Factor matrix U € I, X Ry,
Result: Core tensor Y, Gram matrix S € Rin+1%In+1
1 [IS,I7] « X; /" calculate T= and [~
2 X;z € RI"XI<XI> « X;/* « reshape, no data copy required
4

< > ’
3 Xn+l c R1n+1><(1 #Rp+I” [Iny1) Xn

4 fori=1:(I"/I,41) do
5 forj=1:I°do

6 blk € RIn¥Inst X7 (2, j, (i # Inyy) : ((i+1) % Ingp))
7 ttmy; = blkT U

8 S+ = ttmi,jttml?:j

o Y X

n+l1

o return Y, S

o

4.3 In-Place

As previously noted, in the worst case the ST-HOSVD algorithm re-
quires 3X the tensor size in memory to hold the original tensor and
intermediate TTM results. This occurs when the computation does

PASC ’22, Basel, Switzerland,

Algorithm 3: FaST-HOSVD

Data: Tensor X, accuracy bound e
Result: Tensor core G , factor matrices F

1 G «— X;/ Initialize G
2 51 «— glng; * First Gram matrix
3 A eigenvalues in descending order, V corresponding eigenvectors

4 [AV] «— eig(S1)

5 Up « V(:,1:Ry); /" Ry is smallest value that satisfies e

¢ forn=1:N-1do

7 [Gn+1,Sn+1] < Fused_Packed_Kernel(Gn, Uy, n)
8 [A, V] « eig(Sn+1)

9 Un+1 < V(5 1: Rpy1)

10 G — G Xn UL/ Last TTM

n FeU...Un

12 return G, ¥

not benefit from truncation in earlier dimensions, such as when
the error-tolerance is low or the tensor is of high rank. In these in-
stances, this memory requirement can be prohibitive in computing
the Tucker decomposition of tensors that are larger than % of main
memory (RAM). This is born out in the experimental results section
wherein when the tensor is > % the size of RAM the ST-HOSVD
runs out of memory, either causing the node to crash or the compu-
tation to thrash between Disk and RAM. The former case results in
the computation not being able to complete, whilst the latter case
results in extreme performance degradation. Here we show how the
cache blocking approach described in the previous sections can be
leveraged to drastically decrease the memory requirements of the
algorithm. The experimental results section demonstrates that this
approach generally requires a small fraction of the tensor size in
memory to complete the computation, whilst still benefiting from
reduced runtime due to the improved memory locality. The key
intuition to this approach is that the cache blocks can be prepared
by transposing I+ of the mode-n submatrices together. This can
be seen in Figure 6 (a) wherein each Iy I, X I41 submatrix can be
viewed as Iy X In4+1 with elements of size I,. From here it becomes
apparent that each of the I, /I,4+1 submatrices can be prepared into
I5 blocks, each of size I, X In4+1, by transposing the submatrix.

From here we can leverage existing in-place matrix transpose
algorithms [10][5][25] to prepare the blocks in-place. These blocks
are then iteratively copied into the user defined memory alloca-
tion and undergo fused TTM/Gram multiplication, overwriting the
original tensor with the result and accumulating into the corre-
sponding Gram matrix. In this manner we can do the computation
in-place requiring only I, X I;;+1 memory. However it is worth not-
ing that enough memory to hold multiple blocks is preferred for
high-performance, especially for higher thread counts.

The astute reader may remark that this potentially requires sig-
nificant data movement. We note that the data movement overhead
is asymptotic with the size of the tensor. As shown in the experimen-
tal results section, this proves to be negligible relative to the TTM
and Gram submatrix multiplications, for compute bound problem
sizes. This is due to the fact that matrix multiplication is a O(N?)
operation, whereas matrix transpose is a O(N?) operation. Thus
the more compute bound the submatrix multiplications are, the less
of an impact data movement has on the runtime of the computation.

PASC ’22, Basel, Switzerland,

FLOPs

Bytes ’
multiplication. When either a subsequent tensor dimension is ex-
tremely small or the TTM input matrix has a small number or rows
(approximately < 8 depending on number of bytes in a single value),
either due to dimension size or truncation, then the computation
has the potential to be memory bound. In these cases the data
movement has the potential to introduce significant overhead into
the computation. However, in the latter case when the input TTM
matrix is small, the corresponding TTM is unlikely to contribute
much to the overall runtime of the algorithm. In the instance when
the dimension is extremely small, multiple blocks can be grouped
together to make each TTM multiplication more compute bound.
In either instance we have yet to encounter applications that yield
such a degenerate case. Furthermore, the fused in-place approach is
compatible with the existing unfused approach, meaning that it is
possible to switch between them depending on the size of a given
tensor dimension. We see developing heuristics to decide when
to apply traditional versus proposed approaches as an avenue of
future work.

This relies upon the arithmetic intensity, of each sub-matrix

Algorithm 4: Interleaved In-Place Transpose (IIPT)

Data: A € R™*", interleaving factor a|m
Result: A overwritten by AT e R™ @
1z=2
* each entry of Ajpnrer consists of a contiguous entries of A
2 Ajnter ERF" « A
3 q=nxz-1
4 fori=0:qdo

5 k= (i*n)%q

6 0= Ajnter|i]

7 while k > i do

8 ‘ k= (i*n)%q

9 if k =i && i! = 0 then

10 k= (i*n)%q

n Ainter[i] = Ainter [k]
12 while k > i do

13 Ainter [k] = Ainter[(k * ”)%Q]
14 k = (k *n)%q

15 Ajnter[(k*2)%q] = v

There are several known algorithms for in-place matrix trans-
pose [10][5] [25]. In this work we originally selected the traditional
in-place transpose algorithm based upon cycle-following (IPT) due
to its ease of implementation and O(N?) complexity.

In the literature it is well known that despite accessing the ma-
trix elements fewer times than other in-place transpose algorithms
(some divide and conquer in-place transpose algorithms require
accessing each element O(log n) times) this algorithm suffers from
poor memory locality. This is due to its almost pseudorandom
access of the matrix elements. To alleviate this problem, we devel-
oped a novel improvement to the cycle-following based algorithm
which we refer to as Interleaved In-Place Transpose (IIPT), shown
in Algorithm 4 .

The key improvement of Algorithm 4 over the traditional cycle-
following based in-place transpose algorithm is that Algorithm 4
moves the matrix entries around in contiguous blocks to improve

Benjamin Cobb, Hemanth Kolla, Eric Phipps, and Umit V. Catalyiirek

memory locality. These contiguous blocks can be viewed as in-
terleaved entries of the matrix transpose. This is represented in
Algorithm 4 by Ajpter, defined on Line 2. Note that Ajprer € R&*n
because each entry of Ajnzer consists of a entries of A. In our
experiments we observed that this significantly alleviated the mem-
ory locality issues of the traditional cycle-following based in-place
transpose algorithm, whilst retaining O(N?) complexity. Addition-
ally, due to each cycle being independent of all other cycles, this
algorithm was straightforward to parallelize and adapt to changing
tensor layouts.

We intend to provide a more in-depth analysis of this approach
compared to existing in-place matrix transpose algorithms in a fu-
ture work. The contiguous interleaved elements can be deinterleaved
in memory to complete the transpose under normal circumstances.
This is not shown in Algorithm 4 because in Algorithm 5 the inter-
leaved columns of X, are deinterleaved by the packing phase on
Line 11.

As previously mentioned, we use Algorithm 4 to prepare the
blocks in-place as part of the FIST-HOSVD, shown in Algorithm 5.
The interleaving factor, «, is determined based upon the available
memory and such that « is a factor of I;. a being a factor of I;; pre-
vents the hassle of dealing with leftover rows which would result
in partial blocks. We want to maximize a within these constraints
to maximize the contiguousness of the memory accesses. To this
end we have developed a heuristic that consists of computing the
prime factorization of I, then determining « as the product I’s
prime factors subject to the aforementioned constraints via a sim-
ple monte-carlo method. Note that the in-place transpose is only
applied when the I;;11 submatrices don’t fit into memory. The in-
terleaved columns, each of size I, are deinterleaved by the packing
phase of the FIST-HOSVD. This is identical to the packing phase of
the FaST-HOSVD with the caveat that each of the submatrices are
of size I, X a.

After the blocks have been prepared via the in-place transpose,
% blocks are copied into memory. Each of these blocks is then
dispatched in parallel, computing the fused TTM/Gram multiplica-
tion, with the TTM result overwriting the original tensor and the
Gram result being accumulated into the mode-(n + 1) Gram matrix.
A visual description of this process can be seen in Figure 6.

Algorithm 6 shows this fused in-place kernel within the context
of the FIST-HOSVD. The FIST-HOSVD begins with the same Gram
matrix computation along mode-1 as the ST-HOSVD, followed by
the fused in-place kernel along the internal dimensions, and con-
cludes with an in-place variant of the TTM kernel. Note that at
every iteration of the algorithm, the tensor fibers along the current
dimension are contiguous in memory. Thus, the last TTM is on
a tensor whose fibers corresponding to the last dimension of the
tensor are contiguous. Therefore, the last in-place TTM call consists
of iteratively copying columns of the tensor into memory and com-
puting the partial TTM with UL, overwriting the corresponding
memory region of the tensor with the result.

In the worst case the FIST-HOSVD only requires enough memory
to hold the largest Gram matrix, which as previously mentioned
is I2,,,. The memory consumption of the FIST-HOSVD is thus:
O(I2,,,). We have thus reduced the memory consumption of com-
puting the Tucker Decomposition from the ST-HOSVD’s asymptotic

Fused in-place sequentially truncated higher order singular value decomposition

Inst Inst
(a)

In

\—i 1) Interleaved Inplace Transpose

®) - %
In l l In
Inn 7 1 X
In I In
n
X 7 1 In
n RS
In
Inw1 B
I] 2) Deinterleave blocks into auxiliary memory

(c) _\; %

‘
‘ 1 T
‘ }_zn
M 1 It
Tt
e E l -
X
3) Fused multiplication overwriting core tensor 1
and accumulate gram matrix
It
s
4.) Repeat steps 2 and 3 for each interleaved section Ins1

Figure 6: Example of Fused In-place kernel packing blocks
from one submatrix of reshaped tensor, overwriting it with
partial TTM result, and accumulating partial Gram matrix
result.

bound of O(I2,,,.+]—]Ir\]:1
of O(I24x)-

I) to the FIST-HOSVD’s asymptotic bound

5 EXPERIMENTAL RESULTS
5.1 Experimental Setup

Benchmark results were generated on a single 28 Intel E5-2683v3
2 GHz core node. Each core has access to a 32KB L1, 256KB L2
and 35840KB L3 cache. Each node has 256 GB of main memory.
This is particularly important as we aim to show that the FIST-
HOSVD is able to process larger problem sizes within this given
256 GB allocation. The experimental results verify that when an
implementation attempts to allocate more than the 256 GB available
on the node, the run crashes and is unable to complete. In the tables
below we designate this by “—”.

To ensure a fair comparison and to encourage reproducibility,
all benchmarked implementations were linked to the same MKL
library, run on the same (single) node, and used the same sets of en-
vironment variables. We ran TuckerMPI with multiple processes on

PASC ’22, Basel, Switzerland,

Algorithm 5: Fused In-place kernel

Data: Tensor X, mode n, Factor matrix U € I, X Ry, number of
entries that can fit in user defined auxiliary memory limit
Result: X overwritten with core tensor, Gram matrix S
1 []« X
X, « X aftern fus(d iterations, n’th mode is contiguous

I sl xIpg X 72—

2 X, eR"
s a— Iy, Bl
4 if a<Iy then

1+1«—X

- 3
compute & such that a|I; and o < —7—
" In*In+1

5 fori=1: do
Iy
6 X,i"fE’(:, 1) € RUnH e @)X 5 TIPT(X, (s, 4),
I, = @); /" 1IPT each I;; X Iny1 submatrix
7 0= W; " num_sections_per_iteration
8 aux € RInXInq Xaxn, p g o B

<
4 n i

9 Xn e RInXaXInHX « Xrtlnter;

Iy 1y

oxlpy

11 forj=1:0do

reshape X to simplify notation

10 fori=1:0:

12 ‘ aux(:,z:, J) X,;(:, Lui% 0+ j); /" packing phase
* fused block multiplication

13 forj=1:0do

14 X,,l(:, Luixo+j) =aux(sy:, :,j)T‘u; * overwrite X

15 S+:X,;(:,Z,:,i*Z)+j)X;1(:,:,:,i*Z)+j)T;

Algorithm 6: FIST-HOSVD

Data: Tensor X, auxiliary memory limit in

Result: X overwritten with core tensor, Factor matrices F
1 Sy «— XIX ; /* First Gram matrix
2 forn=1:N-1do

* A eigenvalues in descending order, V' corresponding eigenvectors *
3 [A, V] « eig(Sn)
4 U, < V(;1:Ry);
5 Sn+1 < Fused_Inplace_kernel(G, Uy, B)
6 [A, V] « eig(Sn)
7 UN <« V(;,1:RN)
s X «— X XN UT; Last Inplace TTM
9 F U1 e UN
10 return ¥

* Ry, smallest value that satisfies €

a single node, each with a single thread. We found that this yielded
significantly better performance for TuckerMPI than one process
with multiple threads. To ensure that each process used only a single
thread, we set both OMP_NUM_THREADS and MKL_NUM_THREADS to 1
when running TuckerMPI. In addition to this, we set OMP_PLACES
to cores, MKL_NUM_THREADS to 1, and OMP_PROC_BIND to close for
all experiments. TuckerMPI requires the user to select a proces-
sor grid layout as part of its input. The performance of a given
processor grid is very problem dependent and determining which
grid to use for an arbitrary problem size is still an open research
topic [3, 22]. To this end we experimented with several processor
grids and heuristics to determine which yielded the best perfor-
mance. We eventually settled on a simple heuristic which consisted
of computing the prime factorization of the number of available
processors, sorting them in ascending order, and then assigning

PASC ’22, Basel, Switzerland,

Table 1: Random tensor runtime (in seconds).
1 slice: 64 X 64 X 64 X 64 X 64

l € H Slices: [1 [4 [16 [28]
TuckerMPI 134 66.5 — —
ST-HOSVD 4.4 | 142.1 — —
le-09

FaST-HOSVD | 4.4 | 70.0 — —
FIST-HOSVD 5.5 32.3 | 107.6 | 219.3
TuckerMPI 134 66.4 — —
ST-HOSVD 4.4 | 1438 — —

1605 || pSTHOSVD | 4.3 | 748 - -
FIST-HOSVD | 55 | 32.1 | 107.3 | 219.8
TuckerMPI 13.5 65.6 — —
ST-HOSVD 44 | 1433 - -

le-03

FaST-HOSVD | 4.4 70.8 - -
FIST-HOSVD 5.6 | 32.7 | 107.4 | 219.6

them to each dimension in descending order starting with the sec-
ond to last dimension. Here we assume the last tensor dimension is
time and define the preceding dimensions as together representing
a single timestep or timeslice. This heuristic performed well with
all the process counts and problem sizes we experimented with.

To demonstrate the effectiveness of our approach, here we present
benchmark results on three different datasets, over four different
number of timeslices, for four different error-tolerances (denoted
€ in tables), for two different metrics (runtime and memory con-
sumption). Additionally, we benchmark four different algorithm
implementations: a baseline of the traditional ST-HOSVD within
the GenTen framework, TuckerMPI’s implementation of the ST-
HOSVD, the FaST-HOSVD algorithm utilizing both the kernel fu-
sion and tensor tiling optimizations previously described in Algo-
rithm 3, and the FIST-HOSVD as described in Algorithm 6. This
gives a good overview of the problem sizes each implementation
can handle, as well as the impact that truncation plays in this. Due
to the exponential growth of benchmark configurations, we show
only the results from highest thread count of 28 in the memory
consumption and runtime tables.

The three datasets used in our experiments are: (1) a tensor
with randomly generated entries (Random), (2) HCCI combustion
dataset, and (3) SP combustion dataset. The HCCI dataset, a 4-th
order tensor, is from a simulation of turbulent autoignition over a
2D spatial domain. The mesh with 672 X 672 grid points, containing
33 solution variables at each grid point, constitute the first 3 modes
of the tensor, with time being the last mode. The SP data set is a
5-th order tensor from a simulation over a 3D spatial domain; the
first 3 modes are the 500 X 500 X 500 spatial grid, the 4-th mode
is the 11 solution variables at each grid point, and time is the last
mode. Both the HCCI and SP datasets have large dimensionality
along the first modes and are expected to compress more along
these modes. The shape of these datasets also contrasts with the
equi-sized Random data set, with more work expected along the
initial modes than the later modes.

5.2 Runtime Results

The reduced memory consumption discussed in the previous sec-
tion has the beneficial side effect of improved memory locality. It is
well known that improved memory access patterns tend to yield

Benjamin Cobb, Hemanth Kolla, Eric Phipps, and Umit V. Catalyiirek

Table 2: HCCI tensor runtime (in seconds).
1 slice: 672 X 672 X 33

[€ [[Slicess [176 [326 | 476 [626 |
TuckerMPI 354 | 714 | 1049 -
te0o || STHOSVD | 180 | 37.4 | 5856 -
FaST-HOSVD | 23.9 | 47.8 | 76.0 | 125.2
FIST-HOSVD | 250 | 51.2 | 77.6 | 105.7
TuckerMPI 200 | 437 | 638 | 842
te05 || STHOSVD 9.6 | 233 | 356 | 47.7
FaST-HOSVD | 120 | 31.3 | 448 | 66.7
FIST-HOSVD | 135 | 315 | 457 | 60.2
TuckerMPI 114 | 27.1 | 383 | 491
ST-HOSVD 57 | 126 | 195 | 256
103 | FaST-HOSVD | 6.9 | 160 | 243 | 335
FIST-HOSVD | 7.0 | 165 | 247 | 316

Table 3: SP tensor runtime (in seconds).
1 slice: 500 x 500 X 500 X 11

[€ [Slcess [5 [10] 15 [20 |
TuckerMPI 34.0 — — —
Lo ST-HOSVD | 24.9 | 38.6 - -
FaST-HOSVD | 35.1 | 54.2 - -
FIST-HOSVD | 25.6 | 49.3 | 72.7 | 92.6
TuckerMPI 129 | 254 38.1 —
STHOSVD | 10.1 | 19.2 | 289 | ~—
1e-05 FaST-HOSVD | 12.2 | 228 | 355 -
FIST-HOSVD | 125 | 243 | 364 | 48.2
TuckerMPI 84 | 166 | 248 | 333
ST-HOSVD 7.0 | 13.9 | 21.36 | 27.6
1e03 || piST-HOSVD | 9.5 | 189 | 290 | 37.9
FIST-HOSVD | 99 | 194 | 289 | 384

better utilization of the memory hierarchy, which in turn leads to re-
duced runtime. This balances out the memory movement overhead
incurred to reduce the memory consumption of the FIST-HOSVD.

A significant factor is the degree of truncation along the earlier
dimensions. The truncation for several benchmarked problem sizes
can be seen in Table 4. When the error-tolerance is low and/or the
tensor has high rank, the ST-HOSVD does not benefit significantly
from truncation along the first couple of dimensions. This results
in the later dimensions contributing a significant portion of the
computation. For the traditional ST-HOSVD, this results in long-
skinny matrix multiplications, which many BLAS installations are
not well optimized for [21]. The kernel fusion and tensor tiling
optimizations avoid this scenario by packing the tensor entries into
squarer cache blocks, which are more amenable to existing BLAS
implementations. The result of this can be seen in Table 1 and Fig-
ure 7a, where the algorithms utilizing the kernel fusion and tensor
tiling optimizations outperform the ST-HOSVD implementations
for all error-tolerances. However, when the error-tolerance is high
enough and/or the tensor is low enough rank that the computation
benefits from high truncation along the earlier dimensions, then
the later dimensions tend to not make up as significant a portion
of the computation. In this case, the unfused and unpacked TTM
and Gram kernels which do not incur the corresponding overhead

Fused in-place sequentially truncated higher order singular value decomposition

Table 4: Sample core sizes for all error tolerances.
* only FIST-HOSVD completed

l € H Dataset [Slices [Resulting Core
Random | 4 64 X 64 X 64 X 64 X 64 X 4
1e-09 HCCI 326 631 X 610 X 31 X 326
SP * 20 187 X 288 X 278 X 9 X 20
Random | 4 64 X 64 X 64 X 64 X 64 X 4
le-05 HCCI 326 433 X 410 X 33 X 234
SP* 20 79 X 116 X 117 X 7 X 5
Random | 4 64 X 64 X 64 X 64 X 64 X 4
le-03 HCCI 326 232 X 217 X 29 x 81
SP 20 27 X 48 X 48 X 2 X 3

Table 5: Random tensor memory consumption (in GB).
1slice is ~ 8 GB

[€ I Slices: [1 [4 J16]2s8]
ST-HOSVD 242 962 — [—
1e-09 FaST-HOSVD | 162 | 641 | — | —
FIST-HOSVD | 1.2 | 1.6 | 1.9 | 1.2
ST-HOSVD 242 [962 | —| —
1le-05 FaST-HOSVD | 162 | 641 | — | —
FIST-HOSVD | 1.2 | 1.6 | 1.9 | 1.2
ST-HOSVD 242 [962 | —| —
1le-03 FaST-HOSVD | 16.2 | 641 | — | —
FIST-HOSVD | 1.2 | 16 | 1.9 | 1.2

Table 6: HCCI tensor memory consumption (in GB).
1slice is ~ 0.12 GB

[€ | Slices: [176 [326 | 476 [626]
ST-HOSVD 49.0 | 94.0 [1356 —
1e-09 FaST-HOSVD | 34.2 | 65.2 | 94.1 | 123.0
FIST-HOSVD | 1.1 | 1.1 1.1 1.1
ST-HOSVD 184 | 473 | 658 | 825
1e-05 FaST-HOSVD | 152 | 37.9 | 541 | 70.1
FIST-HOSVD | 1.1 | 1.2 1.1 1.1
ST-HOSVD 6.7 | 177 | 241 | 306
1e-03 FaST-HOSVD | 6.8 | 17.0 | 234 | 29.8
FIST-HOSVD | 1.1 | 1.2 1.3 1.3

tend to do marginally better. This can be seen in Tables 2 and 3, as
well as Figures 7b and 7c.

These empirical observations motivate our goal of developing
heuristics for determining a-priori when to apply each optimization.
It is worth noting that truncating the dimensions in ascending order
is a relatively arbitrary convention. Processing the later dimensions
first would also yield a valid Tucker decomposition. In this scenario,
the later dimensions would generally make up a larger portion of
the computation. We would thus expect this to benefit even more
from the fused approach utilized by the FaST-HOSVD and FIST-
HOSVD . We plan to demonstrate this in future work by adding
the capability to support processing the dimensions in any order to
our implementations.

PASC ’22, Basel, Switzerland,

Table 7: SP tensor memory consumption (in GB).
1 slice is ~ 11 GB

[€ [Slcess [5 [10] 15] 20 |
ST-HOSVD [355[703] —[—
le-09 || FaST-HOSVD | 30.8 | 602 | — | —
FIST-HOSVD | 15 | 1.8 | 15| 17
ST-HOSVD | 104 | 204 | 304 | —
le-05 || FaST-HOSVD | 103 | 202 | 30.2 | —
FISTHOSVD | 1.2 | 12| 14| 13
ST-HOSVD 32| 63| 93123
1le-03 || FaST-HOSVD | 33 | 63| 94 | 124
FIST-HOSVD | 11| 11| 11| 1.1

5.3 Memory Consumption Results

Here we analyze the memory consumption of each implementa-
tion to provide insight into why some of the subsequent runtime
results are unable to complete for certain problem sizes and why
the FIST-HOSVD is able to handle them all. We begin by noting
that we compute the amount of memory consumed as the memory
high-water mark over the course of the computation minus the
size of the original tensor. In our experiments we measured the
memory consumption before and after the computation via the
getrusage() function. Our FIST-HOSVD implementation allows
the user to specify an approximate byte limit for the FIST-HOSVD.
This is the f§ variable used in Algorithms 5 and 6 multiplied by the
size of a single entry. In this case, the number of bytes in a single
entry is 8, as all experiments were done in double precision. This
byte limit controls the size of memory that is used to store the
tensor blocks used in the fused computation. As of now we do not
count the bytes of the matrices used to accumulate the Gram matrix.
Generally, these will be small compared to the size of the tensor
blocks, but we plan to incorporate these bytes in the user defined
allocation in future work. In our experiments we allocated only 1
GB of memory for the FIST-HOSVD. The memory consumption
results in Tables 5-7 and Figure 8 are in GB. From these tables we
can see in all cases the FIST-HOSVD uses significantly less memory
than both the FaST-HOSVD and ST-HOSVD implementations.

The most extreme case can be seen in Figure 8b for 626 timeslices
of the HCCI dataset with an error tolerance of le-7. Each HCCI
timeslice is ~ 0.12 GB, thus the entire tensor is ~ 74.6 GB. In
this case the ST-HOSVD, FaST-HOSVD and FIST-HOSVD, each
respectively consumes approximately 161.9, 114.4, and 1.2 GB of
memory. For example, in this instance memory consumption of
the ST-HOSVD is computed as previously defined by: memory
high water mark of the run minus the size of the original tensor,
which is 236.5 — 74.6 = 161.9. Thus, for this problem size and error
tolerance, the FIST-HOSVD consumed approximately % = 135X
less memory than the ST-HOSVD. For this problem size and error-
tolerance, the size of the original tensor plus the amount of memory
consumed for each implementation is less than the node’s 256 GB
limit and thus each is able to complete.

However, when the error tolerance is further reduced to 1e-9,
ST-HOSVD runs out of memory and crashes as seen in Table 6. This
scenario is repeated several times for each dataset. Note that when
the error tolerance is increased the computation benefits from more

PASC ’22, Basel, Switzerland,

Benjamin Cobb, Hemanth Kolla, Eric Phipps, and Umit V. Catalyiirek

. TuckerMPI . TuckerMPI 7007 . TuckerMP|
s ST-HOSVD 800 s ST-HOSVD s ST-HOSVD
500 W FaST-HOSVD 700 W FaST-HOSVD 600 N FaST-HOSVD
W FIST-HOSVD W FIST-HOSVD EEm FIST-HOSVD
< 400 < 500
3 b
GEJ 300 g 400
g 200 g 0
= & 2001
100 100
0 0-
1 2 4 8 14 28 1 2 4 8 14 28 4 8 14 28
Threads Threads Threads

(a) Random: 64 X 64 X 64 X 64 X 64 X 4

(b) HCCL: 672 X 672 X 33 X 326

(c) SP: 500 X 500 X 500 X 11 X 10

Figure 7: Sample bar charts of runs with an error-tolerance (¢) of 1e-07.

N ST-HOSVD
s FaST-HOSVD
= FIST-HOSVD

160

S
o

1909 = ST-HOSVD

W FaST-HOSVD
m FIST-HOSVD

100

Memory Consumption (GB)
e e
A O 0 O N
o O O O o

N
o

Memory Consumption (GB)

o

Slices

(a) Random: 1 slice is 64 X 64 X 64 X 64 X 64

(b) HCCI: 1 slice is 672 X 672 X 33

= ST-HOSVD
B FaST-HOSVD
mmm FIST-HOSVD

476

Slices Slices

(c) SP: 1 slice is 500 X 500 X 500 x 11

Figure 8: Memory consumption over different timeslice counts for an error-tolerance (¢) of 1e-07.
Bars not shown did not complete due to running out of memory.

truncation, causing each intermediate TTM result to shrink after
every iteration, thereby requiring less memory. This results in the
out-of-place implementations being able to complete. The effect
of error tolerance on truncation is demonstrated in Table 4. Note
that the Random dataset is not truncated even for the highest error
tolerance. Due to its lack of low-rank structure, the Random dataset
is expected to have high rank. In this case, or when the error toler-
ance approaches 0, all datasets’ intermediate TTM results do not
benefit from truncation and thus require at least ~ 3x the original
tensor size in memory, resulting in the out-of-place algorithms not
being able to complete for any problem size greater than % the size
of main memory.

6 CONCLUSIONS AND FUTURE WORK

We have presented two novel optimizations, kernel fusion and ten-
sor tiling, that are aimed at improving the memory locality of the
Sequentially Truncated Higher Order Singular Value Decomposi-
tion algorithm.

This block based approach was then coupled with a novel in-
place transpose algorithm to drastically reduce the memory re-
quirements of the ST-HOSVD. We demonstrated that the resulting
algorithm, the FIST-HOSVD, is capable of computing the Tucker

decomposition of significantly larger tensors than the traditional
ST-HOSVD, without compromising runtime performance.

From here, we aim to port our implementations and optimiza-
tions to the GPU. As previously mentioned, our algorithms are
currently implemented in the Kokkos programming model to fa-
cilitate a GPU port. However, we need several more modifications
to our implementations to ensure optimal performance, although
we expect the general algorithmic structure of the FaST and FIST-
HOSVD to remain the same.

Past literature has shown that GPU applications can especially
benefit from kernel fusion due to memory bandwidth and latency
being major bottle necks of GPU performance. Thus, porting kernel
fusion optimizations and performing similar experiments to those
previously shown is the natural next step. Furthermore, we believe
the FIST-HOSVD can be extended to iteratively process tensor
sections that each fit in a given GPU’s memory. In this way we can
greatly increase the tensor size that a GPU can handle.

ACKNOWLEDGMENTS

We would like to thank Grey Ballard for many insightful discus-
sions pertaining to this work, as well as the anonymous reviewers
for their helpful comments and suggestions over the course of the

Fused in-place sequentially truncated higher order singular value decomposition

review process. This work was performed as part of the ExaLearn
Co-design Center, supported by the Exascale Computing Project (17-
SC-20-SC), a collaborative effort of the U.S. Department of Energy
Office of Science and the National Nuclear Security Administra-
tion. Sandia National Laboratories is a multi-mission laboratory
managed and operated by National Technology and Engineering
Solutions of Sandia, LLC.,a wholly owned subsidiary of Honeywell
International, Inc., for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-NA-0003525.
The views expressed in the article do not necessarily represent
the views of the U.S. Department of Energy or the United States
Government.

REFERENCES

[1] 2002. An Updated Set of Basic Linear Algebra Subprograms (BLAS). ACM Trans.
Math. Softw. 28, 2 (June 2002), 135-151. https://doi.org/10.1145/567806.567807

[2] Sardar Afra, Eduardo Gildin, and Mohammadali Tarrahi. 2014. Heterogeneous
reservoir characterization using efficient parameterization through higher order
SVD (HOSVD). In 2014 American Control Conference. 147-152. https://doi.org/10.
1109/ACC.2014.6859246

[3] Grey Ballard, Alicia Klinvex, and Tamara G. Kolda. 2020. TuckerMPI: A Parallel
C++/MPI Software Package for Large-Scale Data Compression via the Tucker
Tensor Decomposition. ACM Trans. Math. Softw. 46, 2, Article 13 (June 2020).

[4] Rafael Ballester-Ripoll and Renato Pajarola. 2015. Lossy volume compression

using Tucker truncation and thresholding. The Visual Computer 32 (05 2015).

https://doi.org/10.1007/s00371-015-1130-y

Bryan Catanzaro, Alexander Keller, and Michael Garland. 2014. A Decomposition

for In-Place Matrix Transposition. SIGPLAN Not. 49, 8 (2014), 193-206.

[6] J. Choi, X. Liu, and V. Chakaravarthy. 2018. High-Performance Dense Tucker
Decomposition on GPU Clusters. In SC18: Int. C. for High Performance Computing,
Networking, Storage and Analysis. 543-553.

[7] H. Carter Edwards, Christian R. Trott, and Daniel Sunderland. 2014. Kokkos:

Enabling manycore performance portability through polymorphic memory access

patterns. J. Parallel and Distrib. Comput. 74, 12 (2014), 3202 — 3216. https:

//doi.org/10.1016/j.jpdc.2014.07.003

Jifi Filipovi¢, Mati$ Madzin, Jan Fousek, and Ludék Matyska. 2015. Optimizing

CUDA code by kernel fusion: application on BLAS. J of Supercomputing (2015).

Gene H. Golub and Charles F. Van Loan. 1996. Matrix Computations (third ed.).

The Johns Hopkins University Press.

[10] Fred G. Gustavson and Walker David W. 2019. Algorithms for in-place matrix
transposition. Concurrency and Computation 31, 13 (2019).

[11] D.R. Hatch, D. del Castillo-Negrete, and P. W. Terry. 2012. Analysis and Com-
pression of Six-Dimensional Gyrokinetic Datasets Using Higher Order Sin-
gular Value Decomposition. J. Comput. Phys. 231, 11 (jun 2012), 4234-4256.
https://doi.org/10.1016/j.jcp.2012.02.007

[12] Azam Karami, Mehran Yazdi, and Grégoire Mercier. 2012. Compression of Hyper-
spectral Images Using Discerete Wavelet Transform and Tucker Decomposition.

&

[8

[9

=

[13

[14

[15

(17

(18

[19]

[20

[21

~
&,

[23

[24

[25

[26]

(28]

PASC ’22, Basel, Switzerland,

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
5, 2 (2012), 444-450. https://doi.org/10.1109/JSTARS.2012.2189200

Tamara G Kolda and Brett W Bader. 2009. Tensor decompositions and applications.
SIAM review 51, 3 (2009), 455-500.

Tamara G. Kolda and Jimeng Sun. 2008. Scalable Tensor Decompositions for
Multi-aspect Data Mining. In 2008 Eighth IEEE International Conference on Data
Mining. 363-372. https://doi.org/10.1109/ICDM.2008.89

Monica D. Lam, Edward E. Rothberg, and Michael E. Wolf. 1991. The Cache
Performance and Optimizations of Blocked Algorithms. SIGPLAN Not. 26, 4
(April 1991), 63-74. https://doi.org/10.1145/106973.106981

J. Li, C. Battaglino, L. Perros, J. Sun, and R. Vuduc. 2015. An input-adaptive and
in-place approach to dense tensor-times-matrix multiply. In SC ’15: Proceedings of
the International Conference for High Performance Computing, Networking, Storage
and Analysis. 1-12.

Zitong Li, Qiming Fang, and Grey Ballard. 2021. Parallel Tucker Decomposition
with Numerically Accurate SVD. In 50th International Conference on Parallel
Processing (Lemont, IL, USA) (ICPP 2021). Association for Computing Machinery,
New York, NY, USA. https://doi.org/10.1145/3472456.3472472

Jinoh Oh, Kijung Shin, Evangelos Papalexakis, Christos Faloutsos, and Hwanjo
Yu. 2017. S-HOT: Scalable High-Order Tucker Decomposition. 761-770. https:
//doi.org/10.1145/3018661.3018721

L. Omberg, G.H. Golub, and O. Alter. 2007. A Tensor Higher-Order Singular
Value Decomposition for Integrative Analysis of DNA Microarray Data From

Different Studies. Proceedings of the National Academy of Sciences 104, 47 (2007).
Eric T. Phipps and Tamara G. Kolda. 2019. Software for Sparse Tensor Decom-

position on Emerging Computing Architectures. SIAM Journal on Scientific
Computing 41, 3 (2019), C269-C290.

Cody Rivera, Jieyang Chen, Nan Xiong, Shuaiwen Leon Song, and Dingwen Tao.
2020. TSM2X: High-Performance Tall-and-Skinny Matrix-Matrix Multiplication
on GPUs. arXiv:2002.03258 [cs.DC]

Shaden Smith and George Karypis. 2016. A Medium-Grained Algorithm for
Sparse Tensor Factorization. In 2016 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). 902-911. https://doi.org/10.1109/IPDPS.2016.113
Thiago Souza, A. L. Aquino, and D. Gomes. 2019. An Online Method to Detect
Urban Computing Outliers via Higher-Order Singular Value Decomposition.
Sensors (Basel, Switzerland) 19 (2019).

Siham Tabik, Gloria Ortega Lopez, and E M Garzon. 2014. Performance evaluation
of kernel fusion BLAS routines on the GPU: iterative solvers as case study. The
Journal of Supercomputing (11 2014). https://doi.org/10.1007/s11227-014-1102-4
A. Tretyakov and E. Tyrtyshnikov. 2009. Optimal in-place transposition of
rectangular matrices. J. Complexity 25 (08 2009), 377-384. https://doi.org/10.
1016/j.jc0.2009.02.008

L. R. Tucker. 1963. Implications of factor analysis of three-way matrices for
measurement of change. In Problems in measuring change. Madison W1

Nick Vannieuwenhoven, Raf Vandebril, and Karl Meerbergen. 2012. A New
Truncation Strategy for the Higher-Order Singular Value Decomposition. SIAM
Journal on Scientific Computing 34 (04 2012). https://doi.org/10.1137/110836067
M. Alex O. Vasilescu and Demetri Terzopoulos. 2002. Multilinear Analysis of
Image Ensembles: TensorFaces. In Computer Vision — ECCV 2002, Anders Hey-
den, Gunnar Sparr, Mads Nielsen, and Peter Johansen (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 447-460.

https://doi.org/10.1145/567806.567807
https://doi.org/10.1109/ACC.2014.6859246
https://doi.org/10.1109/ACC.2014.6859246
https://doi.org/10.1007/s00371-015-1130-y
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1016/j.jcp.2012.02.007
https://doi.org/10.1109/JSTARS.2012.2189200
https://doi.org/10.1109/ICDM.2008.89
https://doi.org/10.1145/106973.106981
https://doi.org/10.1145/3472456.3472472
https://doi.org/10.1145/3018661.3018721
https://doi.org/10.1145/3018661.3018721
https://arxiv.org/abs/2002.03258
https://doi.org/10.1109/IPDPS.2016.113
https://doi.org/10.1007/s11227-014-1102-4
https://doi.org/10.1016/j.jco.2009.02.008
https://doi.org/10.1016/j.jco.2009.02.008
https://doi.org/10.1137/110836067

	Abstract
	1 Introduction
	2 Related Work
	3 Formal Definition and Notation
	3.1 Tensor Times Matrix kernel (TTM)
	3.2 Gram
	3.3 ST-HOSVD

	4 Optimizations
	4.1 Kernel Fusion
	4.2 Tensor Tiling
	4.3 In-Place

	5 Experimental Results
	5.1 Experimental Setup
	5.2 Runtime Results
	5.3 Memory Consumption Results

	6 Conclusions and Future Work
	Acknowledgments
	References

