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ABSTRACT
In this paper, several novel methods of improving the memory lo-

cality of the Sequentially Truncated Higher Order Singular Value

Decomposition (ST-HOSVD) algorithm for computing the Tucker

decomposition are presented. We show how the two primary com-

putational kernels of the ST-HOSVD can be fused together into a

single kernel to significantly improve memory locality. We then

extend matrix tiling techniques to tensors to further improve cache

utilization. This block-based approach is then coupled with a novel

in-place transpose algorithm to drastically reduce the memory re-

quirements of the algorithm by overwriting the original tensor with

the result. Our approach’s effectiveness is demonstrated by compar-

ing the multi-threaded performance of our optimized ST-HOSVD

algorithm to TuckerMPI, a state-of-the-art ST-HOSVD implemen-

tation, in compressing two combustion simulation datasets. We

demonstrate up to ∼ 135× reduction in auxiliary memory consump-

tion thereby increasing the problem size that can be computed

for a given memory allocation by up to ∼ 3×, whilst maintaining

comparable runtime performance.
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1 INTRODUCTION
The Tucker decomposition [26] is a higher order generalization

of the Singular Value Decomposition (SVD) and leverages a multi-

dimensional dataset’s latent structure to decompose a tensor into

a core tensor and series of factor matrices corresponding to each

dimension of the dataset. For extending rank truncation to tensors,

the Sequentially Truncated Higher Order Singular Value Decompo-

sition (ST-HOSVD) is an efficient method for computing low-rank

Tucker tensor decompositions and is effective at large scale data

compression [2–4, 11, 12]. Multiplying the core tensor along each

dimension by the corresponding factor matrix recovers the original

tensor or, in the case of low-rank Tucker, an approximation of the

original tensor. Due to this, the Tucker decomposition has found

broad applications in fields such as bioinformatics, psychometrics,

computer vision, and signal processing that deal with high dimen-

sional data [19, 23, 26, 28]. The ST-HOSVD algorithm is arguably

the fastest method to compute to the Tucker decomposition due to

its unique ability to iteratively truncate the tensor whilst computing

a low-rank Tucker approximation, thereby saving on FLOPs [27].

A key constraint limiting the performance, and even feasibility, of

computing the Tucker decomposition is memory consumption. The

ST-HOSVD requires a considerable amount of temporary memory

in addition to the input tensor, thus the available memory severely

limits the problem size that can be handled. We build upon the ex-

isting ST-HOSVD algorithm by introducing several optimizations

that significantly improve its memory locality and overall memory

footprint. We focus on optimizing the two kernels that are the com-

putational bottlenecks of the ST-HOSVD algorithm: 1) the Tensor

Times Matrix (TTM) kernel which represents multiplication of a

tensor with a matrix along a specific dimension, and 2) the Gram

matrix computation which involves unfolding the tensor along a

dimension and multiplying the resulting matrix with its transpose.

Our primary contributions are as follows:

• We demonstrate how the TTM and Gram kernels can be

combined within the context of the ST-HOSVD algorithm,

i.e., you can compute the Gram matrix of the next dimension

whilst computing the TTM of the current dimension.

• We utilize the observation that permuting the columns of a

tensor’s matricization does not change the corresponding

Gram matrix to extend matrix tiling and cache blocking

techniques to tensors.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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• We couple this cache blocking approachwith a novel in-place

transpose algorithm to process several cache blocks at a time,

overwriting the original tensor with their partial TTM result.

This allows us to avoid allocating intermediate TTM results,

thereby drastically reducing the memory high-water mark

of the algorithm.

In this paper we describe these optimizations to the ST-HOSVD

algorithm and implementations of these for advanced HPC archi-

tectures. We employ our optimized algorithm for performing com-

pression of two representative combustion datasets:

(1) Homogeneous Charge Compression Ignition (HCCI) simu-

lation in a spatially 2D domain (resulting in a fourth order

tensor)

(2) Statistically Planar (SP) turbulent flame simulation in a spa-

tially 3D domain (fifth order tensor)

Combustion simulations, like many other scientific applications

in the exascale era, generate large volumes of data and compression

is necessary to effectively manage and analyze these datasets.

2 RELATEDWORK
Due to their usefulness, a wide variety of softwares and libraries

have been created to provide implementations of tensor decom-

positions. In our work, we implement ST-HOSVD within the Gen-

Ten [20] package, which provides high performance tensor decom-

position capabilities that are portable across emerging CPU and

GPU architectures. It leverages Kokkos [7], which is a C++ perfor-

mance portability library, to enable a single algorithmic implemen-

tation to be performant and portable across a wide variety of shared

memory parallel computing architectures. Other state-of-the-art

studies of ST-HOSVD and related calculations are summarized be-

low.

TuckerMPI [3] is a C++ software package that utilizes MPI to

implement ST-HOSVD. TuckerMPI’s goal is to provide a frame-

work for parallelizing massive tensor computations across multiple

CPU-based nodes. TuckerMPI provides the user with the ability to

set the dimensions of the processor grid upon which the tensor is

block partitioned. Recently, TuckerMPI implemented a modified

variant of the ST-HOSVD that leverages the QR decomposition to

increase the numerical stability of the algorithm [17]. TuckerMPI

has been shown to effectively compute the ST-HOSVD of datasets

up to 6.7 TB, resulting in compression ratios up to 4 × 10
4
. Our

baseline ST-HOSVD implementation was closely based off Tuck-

erMPI. As shown in the experiments section, we benchmark our

implementations against TuckerMPI in a shared memory setting.

The Matlab Tensor Toolbox (TTB) [13] is a popular tensor soft-

ware package in the field of tensor decompositions. It currently

utilizes the ST-HOSVD to compute the Tucker decomposition. The

TTB is ideal for fast prototyping and experimentation of tensor com-

putations. We used the TTB to prototype and verify the correctness

of our approaches.

Choi et al. [6] presents a distributed multi-GPU implementation

of the Tucker algorithm. The optimizations for preventing mem-

ory movement that they present are in some ways similar to our

optimizations. For example, they present a method they refer to

as tensor reuse that transposes sub-tensor blocks to prepare the

tensor for the next iteration of the ST-HOSVD algorithm to avoid

communication. Whilst this shares a similar intuition to our tensor

tiling strategy, we stress that their optimizations are different from

the ones described in subsequent sections. The key difference is

that our approach computes both the TTM and Gram in a single

step, whilst Choi et al. compute them separately.

There are several existing approaches in the literature that aim

to reduce the memory consumption of computing the Tucker de-

composition, particularly in the sparse case due to the intermediate

data explosion that arises when instantiating portions of a large,

sparse tensor [14, 18]. However, to the best of our knowledge, our

approach is the first to do the computation almost entirely in-place

by overwriting the original tensor with the result, thereby not re-

quiring a large memory allocation to hold the resulting Tucker

decomposition’s core tensor. This marks the biggest difference be-

tween our in-place algorithm and existing methods for computing

the Tucker decomposition. For clarity, here we state our definition

of in-place within the context of this paper. We define in-place as

asymptotically requiring significantly less memory than the origi-

nal tensor size by overwriting the original tensor with the result.

This deviates slightly from the traditional definition of in-place

in that it asymptotically requires more than a constant amount of

memory to compute the result. We see extending the approaches

described in this paper to only requiring a constant amount of

memory as an avenue of future work.

3 FORMAL DEFINITION AND NOTATION
The ST-HOSVD algorithm primarily relies upon two tensor kernels,

the TTM and Gram kernels. We thus first define them and provide

insight into their computation before moving onto the ST-HOSVD

algorithm itself. Both the TTM and Gram kernels can be viewed as

a series of matrix multiplications by first matricizing the tensor. To

fully understand tensor matricization it is helpful to first define the

concept of tensor fibers as follows:

Definition 1. Given thatX is a tensor of order 𝑁 with dimension
sizes: 𝐼1 × · · · × 𝐼𝑁 , the mode-𝑛 fibers are the set of vectors resulting
from holding all but the 𝑛’th mode constant. In other words, the mode-
n fiber 𝑣𝑖1,...,𝑖𝑛−1,𝑖𝑛+1,...𝑖𝑁 = X𝑖1,...,𝑖𝑛−1,:,𝑖𝑛+1,...𝑖𝑁 , where : is used to
denote all elements along that dimension.

Definition 2. Given a tensor X, then X(𝑛) denotes the mode-𝑛
matricization of X and is a matrix whose columns are the mode-𝑛
tensor fibers of X in column major order.

3.1 Tensor Times Matrix kernel (TTM)
The formal definition of TTM is represented as follows:

Definition 3. Given thatX is a tensor of order 𝑁 with dimension
sizes: 𝐼1 × · · · × 𝐼𝑁 andU is a matrix of size 𝐽 × 𝐼𝑛 , then ×𝑛 denotes
a TTM along the 𝑛′𝑡ℎ dimension (mode) of X defined by

Y = X ×𝑛 U ⇐⇒ Y(𝑛) = UX(𝑛) (1)

where Y is the resulting tensor with dimensions: 𝐼1 × · · · × 𝐼𝑛−1 ×
𝐽 × 𝐼𝑛+1 × · · · × 𝐼𝑁 . Defining 𝐼∗ =

∏𝑁
𝑟=1 𝐼𝑟 , 𝐼

⊗ = 𝐼 ∗
𝐼𝑛
, the resulting

asymptotic complexity to calculate Y(𝑛) is 𝑂 (𝐽 𝐼𝑛𝐼⊗).

Figure 1 shows an example of TTM along mode-3 of a 4’th order

tensor. Our initial implementation of the TTM kernel is heavily
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Figure 1: Tensor Times Matrix computation of 30× 40× 20× 3
tensor with 15 × 20 matrix along mode-3.

based upon the work of Ballard et al. [3] and Li et al. [16]. Two

values that will be helpful in the following discussions are:

𝐼>𝑛 =

𝑁∏
𝑟=𝑛+1

𝐼𝑟 , 𝐼<𝑛 =

𝑛−1∏
𝑟=1

𝐼𝑟 (2)

Assuming the entries of X are stored in column-major order

as a contiguous 1D array, i.e., the mode-1 fibers are contiguous

in memory, then the matrix resulting from the matricization of

X consists of 𝐼>𝑛 row-major submatrices that are contiguous in

memory, each with 𝐼𝑛 rows and 𝐼<𝑛 columns for each 1 ≤ 𝑛 ≤ 𝑁 .

Figure 1 provides a simple example of the mode-3 TTM on a 4’th

order tensor. Keep in mind that the submatrices are contiguous and

in row-major order. Taking these arrangements of the submatrices

into account, the submatrix multiplications may be done via a call

to a general matrix-matrix multiplication (GEMM) kernel. This

grants access to the multitude of highly optimized pre-existing

linear algebra libraries, such as BLAS [1]. Furthermore, due to the

fact that the submatrix multiplications involve separate contiguous

sections of the input and output tensors, these GEMM calls can be

executed in parallel. Our baseline ST-HOSVD utilizes this approach.

3.2 Gram
The formal definition of the Gram kernel is as follows:

Definition 4. Given that X and X(𝑛) ∈ R𝐼𝑛×𝐼
⊗
is as previously

defined, then the mode-𝑛 Gram matrix, 𝑆 ∈ R𝐼𝑛×𝐼𝑛 is given by:
𝑆 = X(𝑛)X𝑇(𝑛) with asymptotic complexity 𝑂 (𝐼2𝑛𝐼⊗).

Based upon this, depending on the values of 𝐽 and 𝐼𝑛 relative to

each other, the TTM and Gram matrix kernel require asymptoti-

cally comparable amounts of work. Similar to the TTM kernel, the

Gram kernel can be viewed as a series of row major matrix-matrix

multiplications, the results of which are reduced together to form

the final symmetric Gram matrix. Figure 2 shows an example of

computing the Gram matrix along mode-𝑛 of a tensor.

3.3 ST-HOSVD
Algorithm 1 shows the ST-HOSVD pseudocode and Figure 3 shows

a corresponding example of the Tucker decomposition. As discussed

previously, the computational cost of the ST-HOSVD algorithm is

𝐼𝑛

𝐼<𝑛 𝐼<𝑛 𝐼<𝑛

1 2
. . . 𝐼>𝑛

𝐼𝑛

𝐼<𝑛

𝐼<𝑛

𝐼<𝑛1

2

. . .

𝐼>𝑛

=

Reduce

1𝐼𝑛

𝐼𝑛

+ 2 + . . . + 𝐼>𝑛 =
×

×
𝐼𝑛

𝐼𝑛

Figure 2: Gram matrix computation.
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Figure 3: Tucker decomposition example of 3’rd order 40 ×
30× 20 tensor. The small 13× 8× 15 tensor in the center of the
matrices is referred to as the core tensor. The surrounding
matrices are generally referred to as factormatrices.

dominated by the Gram matrix kernel (Line 3) and the TTM kernel

(Line 7) [3]. Thus, optimizing these two kernels is integral to opti-

mizing the ST-HOSVD algorithm as a whole. Similarly, the memory

consumption of the ST-HOSVD is dominated by the intermediate

TTM results. In the worst case the ST-HOSVD must allocate 3×
the tensor size in memory. This occurs when there is no trunca-

tion along the first two dimensions, generally due to either low

error-tolerance or high tensor rank. The memory consumption of

the ST-HOSVD is thus: 𝑂 (𝐼2𝑚𝑎𝑥 +
∏𝑁
𝑟=1 𝐼𝑟 ), where 𝐼𝑚𝑎𝑥 is the size

of the largest dimension. The 𝐼2𝑚𝑎𝑥 term is the memory required

to compute the largest Gram matrix and store the largest factor

matrix. The

∏𝑁
𝑟=1 𝐼𝑟 term is the memory necessary to store the

core tensor and TTM result, which is the core tensor of the next

iteration. In practice this term almost always constitutes the bulk of

the ST-HOSVD’s memory consumption as seen in the experimental

results section. The goal of this paper is to drop the

∏𝑁
𝑟=1 𝐼𝑟 term

from the ST-HOSVD’s memory consumption O-asymptotic bound.

Algorithm 1: ST-HOSVD
Data: Tensor X, accuracy bound 𝜖

Result: Tensor core G , factor matrices F
1 G ← X; /* Initialize G */

2 for 𝑛 = 1 : 𝑁 do
3 𝑆 ← G𝑛G𝑇𝑛 ; /* Gram matrix */

4 /* 𝜆 eigenvalues in descending order,𝑉 corresponding eigenvectors */

5 [𝜆,𝑉 ] ← 𝑒𝑖𝑔 (𝑆 )
6 𝑈𝑛 ← 𝑉 (:, 1 : 𝑅𝑛 ) ; /* 𝑅𝑛 is smallest value that satisfies 𝜖 */

7 G ← G ×𝑛 𝑈𝑇
𝑛 ; /* TTM */

8 F ← 𝑈1 . . .𝑈𝑁

9 return G, F
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4 OPTIMIZATIONS
4.1 Kernel Fusion
The first optimization that we employed in improving the ST-

HOSVD algorithm relies upon the observation that each TTM sub-

matrix multiplication forms a single, contiguous row of the next

dimension’s matricized tensor used to compute the Gram matrix.

Written formally:

Definition 5. Given X(𝑛) , divide X(𝑛) ’s submatrices into 𝐼>𝑛
𝐼𝑛+1

groups, each with 𝐼𝑛+1 submatrices. Denote the resulting partition as
𝑠𝑛 . Let 𝑠𝑛 [𝑖, 𝑗] denote the 𝑖𝑡ℎ submatrix in the 𝑗𝑡ℎ submatrix group of
X(𝑛) . Accessed linearly, 𝑠𝑛 [𝑖, 𝑗] is the (𝑖 + ( 𝑗 −1) ∗ 𝐼𝑛+1)′𝑡ℎ submatrix
ofX(𝑛) . Additionally, let 𝑣𝑒𝑐 (𝑠 [𝑖, 𝑗]) ∈ R𝐼𝑛+1∗(𝐼

>
𝑛 /𝐼𝑛+1 ) denote the row

vector containing the entries of 𝑠𝑛 [𝑖, 𝑗],X(𝑛) [ 𝑗] be the 𝑗 ′𝑡ℎ submatrix
of X(𝑛) , and X(𝑛+1) [ 𝑗] (𝑖, :) denote all the entries in the 𝑖′𝑡ℎ row of
the 𝑗 ′𝑡ℎ submatrix of X(𝑛+1) . Then X(𝑛+1) [ 𝑗] (𝑖, :) = 𝑣𝑒𝑐 (𝑠𝑛 [𝑖, 𝑗]).

Figure 4 gives an illustration of this. The benefit of viewing

the TTM and Gram in this manner is that it becomes readily ap-

parent that after computing the mode-𝑛 TTM we may immedi-

ately compute a portion of the mode-(𝑛 + 1) Gram matrix. To

do so, compute partial TTM with 𝑠𝑛 [:, 𝑗], where 𝑠𝑛 [:, 𝑗] is all the
matrices in the 𝑗 ′𝑡ℎ submatrix group of X(𝑛) . Logically concate-

nate 𝑣𝑒𝑐 of resulting submatrices to form 𝑋 (𝑛+1) [ 𝑗]. Then compute

(𝑋 (𝑛+1) [ 𝑗]) (𝑋 (𝑛+1) [ 𝑗])𝑇 .
For certain problem sizes, this entails that the entries involved in

both computations may remain in cache for the entire computation.

Regardless of dimension size, the TTM and Gram matrix may thus

be fused together into a single kernel. It is well know that kernel

fusion significantly improves the memory locality of computation.

This is especially beneficial in the case of GPU applications [8, 24].

𝐽𝑛

𝐼<

𝐽𝑛

𝐼<

. . . 𝐽𝑛

𝐼<

𝐼𝑛+1

𝐼𝑛+1

𝐼< ∗ 𝐽𝑛

Figure 4: Example of fusing the result of 𝐼𝑛+1 mode-𝐼𝑛 TTM
submatrices, each ∈ 𝐽𝑛 × 𝐼<𝑛 where 𝐽𝑛 is the number of rows
of the input matrix, into a single submatrix used to compute
the 𝐼𝑛+1 gram matrix.

Once the TTM and Gram kernels have been fused together, the

ST-HOSVD algorithm may be modified to utilize the fused kernel.

Essentially the first Gram and last TTM remain the same, whilst the

remaining kernels can be fused. This modification to the ST-HOSVD

can be seen in Algorithm 3.

As is, this process restricts us to processing to dimensions se-

quentially in-order. However, this restriction can be removed by

the data packing technique described in the subsequent section.

4.2 Tensor Tiling
Matrix tiling, also referred to as matrix blocking, is a common

method of improving cache utilization in matrix multiplication

[1, 9, 15]. Due to the fact that we view both the TTM and Gram

kernels as a series of matrix multiplications it is logical to extend

matrix tiling techniques to tensors.

In the traditional approach, the tensor fibers of each dimension

except the first are strided in memory. Thus, in order to explicitly

form a given mode’s fiber, a series of strided accesses is required.

For architectural reasons, strided memory accesses on single ele-

ments are significantly slower than contiguous accesses and should

generally be avoided. The advantage of the approach presented

in Ballard et al. [3] is that it avoids strided memory accesses by

only dealing with the contiguous row-major submatrices in the

tensor’s matricization at each iteration. The disadvantage of this

approach is that for later dimensions the submatrices tend to be

skinny with one dimension being much larger than the other. Many

GEMM implementations are not primarily optimized for this case

[21]. Our approach aims to alleviate this problem by packing the

tensor entries into cache friendly blocks at every iteration of the

ST-HOSVD algorithm. This causes the fibers corresponding to the

dimension of the current iteration to be contiguous in memory. As

a result, the layout of the tensor evolves in memory over the course

of the computation. In conjunction with the kernel fusion described

in the previous section, this leads to significantly improved memory

locality, the benefits of which are shown in the experimental results

section.

𝐼𝑛 . . .

pack 𝐼𝑛+1 columns together

𝐼<𝑛 𝐼<𝑛

𝐼>𝑛

𝐼𝑛

𝐼𝑛+1

. . .
𝑇𝑇𝑀𝑛

𝐽𝑛

𝐼𝑛+1

.
.
.

𝑡𝑟𝑎𝑛𝑠 𝐼𝑛+1

𝐽𝑛

. . . 𝐺𝑟𝑎𝑚𝑛+1 𝐼𝑛+1

𝐼𝑛+1

Figure 5: Fusing the TTM and Gram steps of the ST-HOSVD
algorithm.Note that the ordering of the tensor entries change
at every iteration to prepare it for the next iteration.

We start by assuming that the tensor begins as column-major

(first dimension contiguous) and that the tensor dimensions are

processed sequentially in order starting at 1. We can process the

dimensions out of order, but it significantly complicates the expla-

nation, so we leave it for future work. For each dimension of the

tensor, the current mode’s fibers are contiguous and packed into

blocks with fibers that are 𝐼<𝑛 offset in memory. In other words, let

X(𝑛) be as previously defined in Definition 2 and 𝑠𝑛 as in Definition

5. Let𝑉𝑗 ∈ R𝐼𝑛×(𝐼
<
𝑛 ∗𝐼𝑛+1 ) be thematrix resulting from concatenating

𝑠𝑛 [:, 𝑗] together. Then 𝑉𝑗 (:, 𝑖 : (𝐼<𝑛 ) : (𝐼<𝑛 ∗ (𝐼𝑛+1 − 1) + 𝑖) columns

of𝑉𝑗 are packed together into a contiguous cache block ∈ R𝐼𝑛×𝐼𝑛+1 ,
where𝑉𝑗 (:, 𝑖 : (𝐼<𝑛 ) : (𝐼<𝑛 ∗ (𝐼𝑛+1−1) +𝑖) denotes each column vector

offset by a stride of 𝐼<𝑛 from the 𝑖′𝑡ℎ column of 𝑉𝑗 . This process is

repeated for each 𝑖 and 𝑗 , subject to 1 ≤ 𝑖 ≤ 𝐼𝑛+1 and 1 ≤ 𝑗 ≤ 𝐼>𝑛
𝐼𝑛+1

.
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Each block then undergoes fused multiplication, transposing

the result by saving it row-major in memory to make the next

dimension’s fibers contiguous in memory. Figure 5 gives a visual

representation of this process. This is repeated until the last di-

mension, wherein a single TTM with the truncated eigenvectors

of the last Gram matrix is performed along the last dimension to

complete the algorithm. This yields the same Tucker decomposition

as the traditional ST-HOSVD algorithm with the caveat that the

core entries are rearranged in memory depending on the order in

which the dimensions were processed. This slightly complicates

the process by which the original tensor is recovered, as the entries

must be unpacked.

This process can also be viewed as transposing the submatrices

formed from the first two dimensions of a special 3’rd order re-

shaped tensor as seen later on in Figure 6 (a). HereX ∈ 𝐼1× · · ·× 𝐼𝑁
is reshaped such that 𝐼<𝑛 contiguous mode-𝑛 fibers form the first

dimension, the second dimension is 𝐼𝑛+1, and the third dimension is

𝐼>𝑛
𝐼𝑛+1

. In the following algorithms, we denote this as: X𝑛 . Here each
𝐼𝑛 rows of the submatrices formed from the first two dimensions

of X𝑛 constitute a block as described in the previous section. Each

block will be multiplied by the same TTM matrix of size 𝐽𝑛 × 𝐼𝑛
(first 𝐽𝑛 eigenvectors of mode-𝑛 Gram matrix). The resulting row-

major block of size 𝐽𝑛 × 𝐼𝑛+1 will then immediately be multiplied by

its transpose on the left to form a symmetric Gram matrix of size

(𝐼𝑛+1 × 𝐼𝑛+1). These Gram matrices are then reduced together to

form the mode-(𝑛+1) Gram matrix. The generalized pseudocode of

this process is shown in Algorithm 2. We refer to the algorithm that

uses this kernel as the Fused + packed ST-HOSVD (FaST-HOSVD),

as can be seen in Algorithm 3.

In the current implementation, each block is (𝐼𝑛×𝐼𝑛+1) for mode-

𝑛, but could be (𝐼𝑛 × 𝐼𝑖 ), where 𝐼𝑖 is an arbitrary dimension of the

tensor. Viewing the tensor in this manner helps relate this approach

to existing matrix blocking techniques and provides intuition as

to why it works. This reshaping is key to facilitating the in-place

optimization described in the next section.

Algorithm 2: Fused + Packed Kernel

Data: Tensor X, mode 𝑛, Factor matrix U ∈ 𝐼𝑛 × 𝑅𝑛
Result: Core tensor Y, Gram matrix S ∈ R𝐼𝑛+1×𝐼𝑛+1

1 [𝐼<, 𝐼> ] ← X; /* calculate 𝐼< and 𝐼> */

2 X′𝑛 ∈ R𝐼𝑛×𝐼<×𝐼> ↞ X; /*↞ reshape, no data copy required */

3 X′
𝑛+1 ∈ R𝐼𝑛+1×(𝐼<∗𝑅𝑛∗𝐼>/𝐼𝑛+1 ) ↞ X′𝑛

4 for 𝑖 = 1 : (𝐼>/𝐼𝑛+1 ) do
5 for 𝑗 = 1 : 𝐼< do
6 𝑏𝑙𝑘 ∈ R𝐼𝑛×𝐼𝑛+1 ← X′𝑛 (:, 𝑗, (𝑖 ∗ 𝐼𝑛+1 ) : ( (𝑖 + 1) ∗ 𝐼𝑛+1 ) )
7 𝑡𝑡𝑚𝑖,𝑗 = 𝑏𝑙𝑘

𝑇U
8 S+ = 𝑡𝑡𝑚𝑖,𝑗 𝑡𝑡𝑚

𝑇
𝑖,𝑗

9 Y ← X′
𝑛+1

10 return Y, S

4.3 In-Place
As previously noted, in the worst case the ST-HOSVD algorithm re-

quires 3× the tensor size in memory to hold the original tensor and

intermediate TTM results. This occurs when the computation does

Algorithm 3: FaST-HOSVD
Data: Tensor X, accuracy bound 𝜖

Result: Tensor core G , factor matrices F
1 G ← X; /* Initialize G */

2 𝑆1 ← G1G𝑇
1
; /* First Gram matrix */

3 /* 𝜆 eigenvalues in descending order,𝑉 corresponding eigenvectors */

4 [𝜆,𝑉 ] ← 𝑒𝑖𝑔 (𝑆1 )
5 𝑈1 ← 𝑉 (:, 1 : 𝑅1 ) ; /* 𝑅1 is smallest value that satisfies 𝜖 */

6 for 𝑛 = 1 : 𝑁 − 1 do
7 [G𝑛+1, 𝑆𝑛+1 ] ← 𝐹𝑢𝑠𝑒𝑑_𝑃𝑎𝑐𝑘𝑒𝑑_𝐾𝑒𝑟𝑛𝑒𝑙 (G𝑛,𝑈𝑛, 𝑛)
8 [𝜆,𝑉 ] ← 𝑒𝑖𝑔 (𝑆𝑛+1 )
9 𝑈𝑛+1 ← 𝑉 (:, 1 : 𝑅𝑛+1 )

10 G ← G ×𝑛 𝑈𝑇
𝑁
; /* Last TTM */

11 F ← 𝑈1 . . .𝑈𝑁

12 return G, F

not benefit from truncation in earlier dimensions, such as when

the error-tolerance is low or the tensor is of high rank. In these in-

stances, this memory requirement can be prohibitive in computing

the Tucker decomposition of tensors that are larger than
1

3
of main

memory (RAM). This is born out in the experimental results section

wherein when the tensor is > 1

3
the size of RAM the ST-HOSVD

runs out of memory, either causing the node to crash or the compu-

tation to thrash between Disk and RAM. The former case results in

the computation not being able to complete, whilst the latter case

results in extreme performance degradation. Here we show how the

cache blocking approach described in the previous sections can be

leveraged to drastically decrease the memory requirements of the

algorithm. The experimental results section demonstrates that this

approach generally requires a small fraction of the tensor size in

memory to complete the computation, whilst still benefiting from

reduced runtime due to the improved memory locality. The key

intuition to this approach is that the cache blocks can be prepared

by transposing 𝐼𝑛+1 of the mode-𝑛 submatrices together. This can

be seen in Figure 6 (a) wherein each 𝐼<𝑛 ∗ 𝐼𝑛 × 𝐼𝑛+1 submatrix can be

viewed as 𝐼<𝑛 × 𝐼𝑛+1 with elements of size 𝐼𝑛 . From here it becomes

apparent that each of the 𝐼>𝑛 /𝐼𝑛+1 submatrices can be prepared into

𝐼<𝑛 blocks, each of size 𝐼𝑛 × 𝐼𝑛+1, by transposing the submatrix.

From here we can leverage existing in-place matrix transpose

algorithms [10][5][25] to prepare the blocks in-place. These blocks

are then iteratively copied into the user defined memory alloca-

tion and undergo fused TTM/Gram multiplication, overwriting the

original tensor with the result and accumulating into the corre-

sponding Gram matrix. In this manner we can do the computation

in-place requiring only 𝐼𝑛 × 𝐼𝑛+1 memory. However it is worth not-

ing that enough memory to hold multiple blocks is preferred for

high-performance, especially for higher thread counts.

The astute reader may remark that this potentially requires sig-

nificant data movement. We note that the data movement overhead

is asymptotic with the size of the tensor. As shown in the experimen-

tal results section, this proves to be negligible relative to the TTM

and Gram submatrix multiplications, for compute bound problem

sizes. This is due to the fact that matrix multiplication is a 𝑂 (𝑁 3)
operation, whereas matrix transpose is a 𝑂 (𝑁 2) operation. Thus
the more compute bound the submatrix multiplications are, the less

of an impact data movement has on the runtime of the computation.
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This relies upon the arithmetic intensity,
𝐹𝐿𝑂𝑃𝑠
𝐵𝑦𝑡𝑒𝑠

, of each sub-matrix

multiplication. When either a subsequent tensor dimension is ex-

tremely small or the TTM input matrix has a small number or rows

(approximately < 8 depending on number of bytes in a single value),

either due to dimension size or truncation, then the computation

has the potential to be memory bound. In these cases the data

movement has the potential to introduce significant overhead into

the computation. However, in the latter case when the input TTM

matrix is small, the corresponding TTM is unlikely to contribute

much to the overall runtime of the algorithm. In the instance when

the dimension is extremely small, multiple blocks can be grouped

together to make each TTM multiplication more compute bound.

In either instance we have yet to encounter applications that yield

such a degenerate case. Furthermore, the fused in-place approach is

compatible with the existing unfused approach, meaning that it is

possible to switch between them depending on the size of a given

tensor dimension. We see developing heuristics to decide when

to apply traditional versus proposed approaches as an avenue of

future work.

Algorithm 4: Interleaved In-Place Transpose (IIPT)

Data: 𝐴 ∈ R𝑚×𝑛
, interleaving factor 𝛼 |𝑚

Result: 𝐴 overwritten by 𝐴𝑇
𝑖𝑛𝑡𝑒𝑟

∈ R𝑛×𝑚
𝛼

1 𝑧 = 𝑚
𝛼

/* each entry of𝐴𝑖𝑛𝑡𝑒𝑟 consists of 𝛼 contiguous entries of𝐴 */

2 𝐴𝑖𝑛𝑡𝑒𝑟 ∈ R𝑧×𝑛 ↞ 𝐴

3 𝑞 = 𝑛 ∗ 𝑧 − 1

4 for 𝑖 = 0 : 𝑞 do
5 𝑘 = (𝑖 ∗ 𝑛)%𝑞
6 𝑣 = 𝐴𝑖𝑛𝑡𝑒𝑟 [𝑖 ]
7 while 𝑘 > 𝑖 do
8 𝑘 = (𝑖 ∗ 𝑛)%𝑞
9 if 𝑘 = 𝑖 && 𝑖! = 0 then
10 𝑘 = (𝑖 ∗ 𝑛)%𝑞
11 𝐴𝑖𝑛𝑡𝑒𝑟 [𝑖 ] = 𝐴𝑖𝑛𝑡𝑒𝑟 [𝑘 ]
12 while 𝑘 > 𝑖 do
13 𝐴𝑖𝑛𝑡𝑒𝑟 [𝑘 ] = 𝐴𝑖𝑛𝑡𝑒𝑟 [ (𝑘 ∗ 𝑛)%𝑞 ]
14 𝑘 = (𝑘 ∗ 𝑛)%𝑞
15 𝐴𝑖𝑛𝑡𝑒𝑟 [ (𝑘 ∗ 𝑧 )%𝑞 ] = 𝑣

There are several known algorithms for in-place matrix trans-

pose [10][5] [25]. In this work we originally selected the traditional

in-place transpose algorithm based upon cycle-following (IPT) due

to its ease of implementation and 𝑂 (𝑁 2) complexity.

In the literature it is well known that despite accessing the ma-

trix elements fewer times than other in-place transpose algorithms

(some divide and conquer in-place transpose algorithms require

accessing each element 𝑂 (log𝑛) times) this algorithm suffers from

poor memory locality. This is due to its almost pseudorandom

access of the matrix elements. To alleviate this problem, we devel-

oped a novel improvement to the cycle-following based algorithm

which we refer to as Interleaved In-Place Transpose (IIPT), shown

in Algorithm 4 .

The key improvement of Algorithm 4 over the traditional cycle-

following based in-place transpose algorithm is that Algorithm 4

moves the matrix entries around in contiguous blocks to improve

memory locality. These contiguous blocks can be viewed as in-

terleaved entries of the matrix transpose. This is represented in

Algorithm 4 by𝐴𝑖𝑛𝑡𝑒𝑟 , defined on Line 2. Note that𝐴𝑖𝑛𝑡𝑒𝑟 ∈ R
𝑚
𝛼
×𝑛

because each entry of 𝐴𝑖𝑛𝑡𝑒𝑟 consists of 𝛼 entries of 𝐴. In our

experiments we observed that this significantly alleviated the mem-

ory locality issues of the traditional cycle-following based in-place

transpose algorithm, whilst retaining 𝑂 (𝑁 2) complexity. Addition-

ally, due to each cycle being independent of all other cycles, this

algorithm was straightforward to parallelize and adapt to changing

tensor layouts.

We intend to provide a more in-depth analysis of this approach

compared to existing in-place matrix transpose algorithms in a fu-

turework. The contiguous interleaved elements can be deinterleaved
in memory to complete the transpose under normal circumstances.

This is not shown in Algorithm 4 because in Algorithm 5 the inter-

leaved columns of X𝑛 are deinterleaved by the packing phase on

Line 11.

As previously mentioned, we use Algorithm 4 to prepare the

blocks in-place as part of the FIST-HOSVD, shown in Algorithm 5.

The interleaving factor, 𝛼 , is determined based upon the available

memory and such that 𝛼 is a factor of 𝐼<𝑛 . 𝛼 being a factor of 𝐼<𝑛 pre-

vents the hassle of dealing with leftover rows which would result

in partial blocks. We want to maximize 𝛼 within these constraints

to maximize the contiguousness of the memory accesses. To this

end we have developed a heuristic that consists of computing the

prime factorization of 𝐼<𝑛 , then determining 𝛼 as the product 𝐼<𝑛 ’s

prime factors subject to the aforementioned constraints via a sim-

ple monte-carlo method. Note that the in-place transpose is only

applied when the 𝐼𝑛+1 submatrices don’t fit into memory. The in-

terleaved columns, each of size 𝐼𝑛 , are deinterleaved by the packing

phase of the FIST-HOSVD. This is identical to the packing phase of

the FaST-HOSVD with the caveat that each of the submatrices are

of size 𝐼𝑛 × 𝛼 .
After the blocks have been prepared via the in-place transpose,

𝛽

𝐼𝑛∗𝐼𝑛+1 blocks are copied into memory. Each of these blocks is then

dispatched in parallel, computing the fused TTM/Gram multiplica-

tion, with the TTM result overwriting the original tensor and the

Gram result being accumulated into the mode-(𝑛 + 1) Gram matrix.

A visual description of this process can be seen in Figure 6.

Algorithm 6 shows this fused in-place kernel within the context

of the FIST-HOSVD. The FIST-HOSVD begins with the same Gram

matrix computation along mode-1 as the ST-HOSVD, followed by

the fused in-place kernel along the internal dimensions, and con-

cludes with an in-place variant of the TTM kernel. Note that at

every iteration of the algorithm, the tensor fibers along the current

dimension are contiguous in memory. Thus, the last TTM is on

a tensor whose fibers corresponding to the last dimension of the

tensor are contiguous. Therefore, the last in-place TTM call consists

of iteratively copying columns of the tensor into memory and com-

puting the partial TTM withU𝑇
𝑁
, overwriting the corresponding

memory region of the tensor with the result.

In the worst case the FIST-HOSVD only requires enoughmemory

to hold the largest Gram matrix, which as previously mentioned

is 𝐼2𝑚𝑎𝑥 . The memory consumption of the FIST-HOSVD is thus:

𝑂 (𝐼2𝑚𝑎𝑥 ). We have thus reduced the memory consumption of com-

puting the Tucker Decomposition from the ST-HOSVD’s asymptotic
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1.) Interleaved Inplace Transpose

2.) Deinterleave blocks into auxiliary memory

3.) Fused multiplication overwriting core tensor

and accumulate gram matrix

4.) Repeat steps 2 and 3 for each interleaved section

Figure 6: Example of Fused In-place kernel packing blocks
from one submatrix of reshaped tensor, overwriting it with
partial TTM result, and accumulating partial Gram matrix
result.

bound of𝑂 (𝐼2𝑚𝑎𝑥 +
∏𝑁
𝑟=1 𝐼𝑟 ) to the FIST-HOSVD’s asymptotic bound

of 𝑂 (𝐼2𝑚𝑎𝑥 ).

5 EXPERIMENTAL RESULTS
5.1 Experimental Setup
Benchmark results were generated on a single 28 Intel E5-2683v3

2 GHz core node. Each core has access to a 32KB L1, 256KB L2

and 35840KB L3 cache. Each node has 256 GB of main memory.

This is particularly important as we aim to show that the FIST-

HOSVD is able to process larger problem sizes within this given

256 GB allocation. The experimental results verify that when an

implementation attempts to allocate more than the 256 GB available

on the node, the run crashes and is unable to complete. In the tables

below we designate this by “—”.

To ensure a fair comparison and to encourage reproducibility,

all benchmarked implementations were linked to the same MKL

library, run on the same (single) node, and used the same sets of en-

vironment variables. We ran TuckerMPI with multiple processes on

Algorithm 5: Fused In-place kernel

Data: Tensor X, mode 𝑛, Factor matrix U ∈ 𝐼𝑛 × 𝑅𝑛 , number of

entries that can fit in user defined auxiliary memory limit 𝛽

Result: X overwritten with core tensor, Gram matrix S
1 [𝐼<𝑛 , 𝐼>𝑛 ] ← X

/* X𝑛 ↞ X after 𝑛 fused iterations, 𝑛’th mode is contiguous */

2 X𝑛 ∈ R
𝐼𝑛𝑛 ∗𝐼𝑛×𝐼𝑛+1×

𝐼>𝑛
𝐼𝑛+1 ↞ X

3 𝛼 ← [𝐼<𝑛 , 𝛽 ]; /* compute 𝛼 such that 𝛼 |𝐼<𝑛 and 𝛼 <
𝛽

𝐼𝑛∗𝐼𝑛+1
*/

4 if 𝛼 < 𝐼<𝑛 then
5 for 𝑖 = 1 :

𝐼>𝑛
𝐼𝑛+1

do

6 X𝑖𝑛𝑡𝑒𝑟
𝑛 (:, :, 𝑖 ) ∈ R(𝐼𝑛∗𝐼𝑛+1∗𝛼 )×

𝐼<𝑛
𝛼 ↞ IIPT(X𝑛 (:, :, 𝑖 ) ,

𝐼𝑛 ∗ 𝛼 ); /* IIPT each 𝐼<𝑛 × 𝐼𝑛+1 submatrix */

7 𝑣 =
𝛽

𝐼𝑛∗𝐼𝑛+1∗𝛼 ; /* num_sections_per_iteration */

8 𝑎𝑢𝑥 ∈ R𝐼𝑛×𝐼𝑛+1 ×𝛼×𝑛 ; /* 𝑎𝑢𝑥 ≤ 𝛽 */

9 X′𝑛 ∈ R𝐼𝑛×𝛼×𝐼𝑛+1×
𝐼<𝑛
𝛼 ↞ X𝑖𝑛𝑡𝑒𝑟

𝑛 ; /* reshape X to simplify notation */

10 for 𝑖 = 1 : 𝑣 :
𝐼<𝑛 ∗𝐼>𝑛
𝛼∗𝐼𝑛+1 do

11 for 𝑗 = 1 : 𝑣 do
12 𝑎𝑢𝑥 (:, :, :, 𝑗 ) ← X′𝑛 (:, :, :, 𝑖 ∗ 𝑣 + 𝑗 ) ; /* packing phase */

/* fused block multiplication */

13 for 𝑗 = 1 : 𝑣 do
14 X′𝑛 (:, :, :, 𝑖 ∗ 𝑣 + 𝑗 ) = 𝑎𝑢𝑥 (:, :, :, 𝑗 )𝑇U; /* overwrite X */

15 S+ = X′𝑛 (:, :, :, 𝑖 ∗ 𝑣 + 𝑗 )X
′
𝑛 (:, :, :, 𝑖 ∗ 𝑣 + 𝑗 )𝑇 ;

Algorithm 6: FIST-HOSVD
Data: Tensor X, auxiliary memory limit in 𝛽

Result: X overwritten with core tensor, Factor matrices F
1 𝑆0 ← X1X𝑇

1
; /* First Gram matrix */

2 for 𝑛 = 1 : 𝑁 − 1 do
/* 𝜆 eigenvalues in descending order,𝑉 corresponding eigenvectors */

3 [𝜆,𝑉 ] ← 𝑒𝑖𝑔 (𝑆𝑛 )
4 𝑈𝑛 ← 𝑉 (:, 1 : 𝑅𝑛 ) ; /* 𝑅𝑛 , smallest value that satisfies 𝜖 */

5 𝑆𝑛+1 ← Fused_Inplace_kernel(G,𝑈𝑛, 𝛽 )

6 [𝜆,𝑉 ] ← 𝑒𝑖𝑔 (𝑆𝑁 )
7 𝑈𝑁 ← 𝑉 (:, 1 : 𝑅𝑁 )
8 X ← X ×𝑁 𝑈𝑇

𝑁
; /* Last Inplace TTM */

9 F ← 𝑈1 . . .𝑈𝑁

10 return F

a single node, each with a single thread. We found that this yielded

significantly better performance for TuckerMPI than one process

withmultiple threads. To ensure that each process used only a single

thread, we set both OMP_NUM_THREADS and MKL_NUM_THREADS to 1

when running TuckerMPI. In addition to this, we set OMP_PLACES
to cores, MKL_NUM_THREADS to 1, and OMP_PROC_BIND to close for
all experiments. TuckerMPI requires the user to select a proces-

sor grid layout as part of its input. The performance of a given

processor grid is very problem dependent and determining which

grid to use for an arbitrary problem size is still an open research

topic [3, 22]. To this end we experimented with several processor

grids and heuristics to determine which yielded the best perfor-

mance. We eventually settled on a simple heuristic which consisted

of computing the prime factorization of the number of available

processors, sorting them in ascending order, and then assigning
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Table 1: Random tensor runtime (in seconds).
1 slice: 64 × 64 × 64 × 64 × 64

𝜖 Slices: 1 4 16 28

1e-09

TuckerMPI 13.4 66.5 — —

ST-HOSVD 4.4 142.1 — —

FaST-HOSVD 4.4 70.0 — —

FIST-HOSVD 5.5 32.3 107.6 219.3

1e-05

TuckerMPI 13.4 66.4 — —

ST-HOSVD 4.4 143.8 — —

FaST-HOSVD 4.3 74.8 — —

FIST-HOSVD 5.5 32.1 107.3 219.8

1e-03

TuckerMPI 13.5 65.6 — —

ST-HOSVD 4.4 143.3 — —

FaST-HOSVD 4.4 70.8 — —

FIST-HOSVD 5.6 32.7 107.4 219.6

them to each dimension in descending order starting with the sec-

ond to last dimension. Here we assume the last tensor dimension is

time and define the preceding dimensions as together representing

a single timestep or timeslice. This heuristic performed well with

all the process counts and problem sizes we experimented with.

To demonstrate the effectiveness of our approach, herewe present

benchmark results on three different datasets, over four different

number of timeslices, for four different error-tolerances (denoted

𝜖 in tables), for two different metrics (runtime and memory con-

sumption). Additionally, we benchmark four different algorithm

implementations: a baseline of the traditional ST-HOSVD within

the GenTen framework, TuckerMPI’s implementation of the ST-

HOSVD, the FaST-HOSVD algorithm utilizing both the kernel fu-

sion and tensor tiling optimizations previously described in Algo-

rithm 3, and the FIST-HOSVD as described in Algorithm 6. This

gives a good overview of the problem sizes each implementation

can handle, as well as the impact that truncation plays in this. Due

to the exponential growth of benchmark configurations, we show

only the results from highest thread count of 28 in the memory

consumption and runtime tables.

The three datasets used in our experiments are: (1) a tensor

with randomly generated entries (Random), (2) HCCI combustion

dataset, and (3) SP combustion dataset. The HCCI dataset, a 4-th

order tensor, is from a simulation of turbulent autoignition over a

2D spatial domain. The mesh with 672× 672 grid points, containing
33 solution variables at each grid point, constitute the first 3 modes

of the tensor, with time being the last mode. The SP data set is a

5-th order tensor from a simulation over a 3D spatial domain; the

first 3 modes are the 500 × 500 × 500 spatial grid, the 4-th mode

is the 11 solution variables at each grid point, and time is the last

mode. Both the HCCI and SP datasets have large dimensionality

along the first modes and are expected to compress more along

these modes. The shape of these datasets also contrasts with the

equi-sized Random data set, with more work expected along the

initial modes than the later modes.

5.2 Runtime Results
The reduced memory consumption discussed in the previous sec-

tion has the beneficial side effect of improved memory locality. It is

well known that improved memory access patterns tend to yield

Table 2: HCCI tensor runtime (in seconds).
1 slice: 672 × 672 × 33

𝜖 Slices: 176 326 476 626

1e-09

TuckerMPI 35.4 71.4 104.9 —

ST-HOSVD 18.0 37.4 58.6 —

FaST-HOSVD 23.9 47.8 76.0 125.2

FIST-HOSVD 25.0 51.2 77.6 105.7

1e-05

TuckerMPI 20.0 43.7 63.8 84.2

ST-HOSVD 9.6 23.3 35.6 47.7
FaST-HOSVD 12.0 31.3 44.8 66.7

FIST-HOSVD 13.5 31.5 45.7 60.2

1e-03

TuckerMPI 11.4 27.1 38.3 49.1

ST-HOSVD 5.7 12.6 19.5 25.6
FaST-HOSVD 6.9 16.0 24.3 33.5

FIST-HOSVD 7.0 16.5 24.7 31.6

Table 3: SP tensor runtime (in seconds).
1 slice: 500 × 500 × 500 × 11

𝜖 Slices: 5 10 15 20

1e-09

TuckerMPI 34.0 — — —

ST-HOSVD 24.9 38.6 — —

FaST-HOSVD 35.1 54.2 — —

FIST-HOSVD 25.6 49.3 72.7 92.6

1e-05

TuckerMPI 12.9 25.4 38.1 —

ST-HOSVD 10.1 19.2 28.9 —

FaST-HOSVD 12.2 22.8 35.5 —

FIST-HOSVD 12.5 24.3 36.4 48.2

1e-03

TuckerMPI 8.4 16.6 24.8 33.3

ST-HOSVD 7.0 13.9 21.36 27.6
FaST-HOSVD 9.5 18.9 29.0 37.9

FIST-HOSVD 9.9 19.4 28.9 38.4

better utilization of the memory hierarchy, which in turn leads to re-

duced runtime. This balances out the memory movement overhead

incurred to reduce the memory consumption of the FIST-HOSVD.

A significant factor is the degree of truncation along the earlier

dimensions. The truncation for several benchmarked problem sizes

can be seen in Table 4. When the error-tolerance is low and/or the

tensor has high rank, the ST-HOSVD does not benefit significantly

from truncation along the first couple of dimensions. This results

in the later dimensions contributing a significant portion of the

computation. For the traditional ST-HOSVD, this results in long-

skinny matrix multiplications, which many BLAS installations are

not well optimized for [21]. The kernel fusion and tensor tiling

optimizations avoid this scenario by packing the tensor entries into

squarer cache blocks, which are more amenable to existing BLAS

implementations. The result of this can be seen in Table 1 and Fig-

ure 7a, where the algorithms utilizing the kernel fusion and tensor

tiling optimizations outperform the ST-HOSVD implementations

for all error-tolerances. However, when the error-tolerance is high

enough and/or the tensor is low enough rank that the computation

benefits from high truncation along the earlier dimensions, then

the later dimensions tend to not make up as significant a portion

of the computation. In this case, the unfused and unpacked TTM

and Gram kernels which do not incur the corresponding overhead
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Table 4: Sample core sizes for all error tolerances.
* only FIST-HOSVD completed

𝜖 Dataset Slices Resulting Core

1e-09

Random 4 64 × 64 × 64 × 64 × 64 × 4

HCCI 326 631 × 610 × 31 × 326

SP
∗

20 187 × 288 × 278 × 9 × 20

1e-05

Random 4 64 × 64 × 64 × 64 × 64 × 4

HCCI 326 433 × 410 × 33 × 234

SP
∗

20 79 × 116 × 117 × 7 × 5

1e-03

Random 4 64 × 64 × 64 × 64 × 64 × 4

HCCI 326 232 × 217 × 29 × 81

SP 20 27 × 48 × 48 × 2 × 3

Table 5: Random tensor memory consumption (in GB).
1 slice is ∼ 8 GB

𝜖 Slices: 1 4 16 28

1e-09

ST-HOSVD 24.2 96.2 — —

FaST-HOSVD 16.2 64.1 — —

FIST-HOSVD 1.2 1.6 1.9 1.2

1e-05

ST-HOSVD 24.2 96.2 — —

FaST-HOSVD 16.2 64.1 — —

FIST-HOSVD 1.2 1.6 1.9 1.2

1e-03

ST-HOSVD 24.2 96.2 — —

FaST-HOSVD 16.2 64.1 — —

FIST-HOSVD 1.2 1.6 1.9 1.2

Table 6: HCCI tensor memory consumption (in GB).
1 slice is ∼ 0.12 GB

𝜖 Slices: 176 326 476 626

1e-09

ST-HOSVD 49.0 94.0 135.6 —

FaST-HOSVD 34.2 65.2 94.1 123.0

FIST-HOSVD 1.1 1.1 1.1 1.1

1e-05

ST-HOSVD 18.4 47.3 65.8 82.5

FaST-HOSVD 15.2 37.9 54.1 70.1

FIST-HOSVD 1.1 1.2 1.1 1.1

1e-03

ST-HOSVD 6.7 17.7 24.1 30.6

FaST-HOSVD 6.8 17.0 23.4 29.8

FIST-HOSVD 1.1 1.2 1.3 1.3

tend to do marginally better. This can be seen in Tables 2 and 3, as

well as Figures 7b and 7c.

These empirical observations motivate our goal of developing

heuristics for determining a-priori when to apply each optimization.

It is worth noting that truncating the dimensions in ascending order

is a relatively arbitrary convention. Processing the later dimensions

first would also yield a valid Tucker decomposition. In this scenario,

the later dimensions would generally make up a larger portion of

the computation. We would thus expect this to benefit even more

from the fused approach utilized by the FaST-HOSVD and FIST-

HOSVD . We plan to demonstrate this in future work by adding

the capability to support processing the dimensions in any order to

our implementations.

Table 7: SP tensor memory consumption (in GB).
1 slice is ∼ 11 GB

𝜖 Slices: 5 10 15 20

1e-09

ST-HOSVD 35.5 70.3 — —

FaST-HOSVD 30.8 60.2 — —

FIST-HOSVD 1.5 1.8 1.5 1.7

1e-05

ST-HOSVD 10.4 20.4 30.4 —

FaST-HOSVD 10.3 20.2 30.2 —

FIST-HOSVD 1.2 1.2 1.4 1.3

1e-03

ST-HOSVD 3.2 6.3 9.3 12.3

FaST-HOSVD 3.3 6.3 9.4 12.4

FIST-HOSVD 1.1 1.1 1.1 1.1

5.3 Memory Consumption Results
Here we analyze the memory consumption of each implementa-

tion to provide insight into why some of the subsequent runtime

results are unable to complete for certain problem sizes and why

the FIST-HOSVD is able to handle them all. We begin by noting

that we compute the amount of memory consumed as the memory

high-water mark over the course of the computation minus the

size of the original tensor. In our experiments we measured the

memory consumption before and after the computation via the

getrusage() function. Our FIST-HOSVD implementation allows

the user to specify an approximate byte limit for the FIST-HOSVD.

This is the 𝛽 variable used in Algorithms 5 and 6 multiplied by the

size of a single entry. In this case, the number of bytes in a single

entry is 8, as all experiments were done in double precision. This

byte limit controls the size of memory that is used to store the

tensor blocks used in the fused computation. As of now we do not

count the bytes of the matrices used to accumulate the Grammatrix.

Generally, these will be small compared to the size of the tensor

blocks, but we plan to incorporate these bytes in the user defined

allocation in future work. In our experiments we allocated only 1

GB of memory for the FIST-HOSVD. The memory consumption

results in Tables 5-7 and Figure 8 are in GB. From these tables we

can see in all cases the FIST-HOSVD uses significantly less memory

than both the FaST-HOSVD and ST-HOSVD implementations.

The most extreme case can be seen in Figure 8b for 626 timeslices

of the HCCI dataset with an error tolerance of 1e-7. Each HCCI

timeslice is ∼ 0.12 GB, thus the entire tensor is ∼ 74.6 GB. In

this case the ST-HOSVD, FaST-HOSVD and FIST-HOSVD, each

respectively consumes approximately 161.9, 114.4, and 1.2 GB of

memory. For example, in this instance memory consumption of

the ST-HOSVD is computed as previously defined by: memory

high water mark of the run minus the size of the original tensor,

which is 236.5 − 74.6 = 161.9. Thus, for this problem size and error

tolerance, the FIST-HOSVD consumed approximately
161.9
1.2 = 135×

less memory than the ST-HOSVD. For this problem size and error-

tolerance, the size of the original tensor plus the amount of memory

consumed for each implementation is less than the node’s 256 GB

limit and thus each is able to complete.

However, when the error tolerance is further reduced to 1e-9,

ST-HOSVD runs out of memory and crashes as seen in Table 6. This

scenario is repeated several times for each dataset. Note that when

the error tolerance is increased the computation benefits from more
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(c) SP: 500 × 500 × 500 × 11 × 10

Figure 7: Sample bar charts of runs with an error-tolerance (𝜖) of 1e-07.
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Figure 8: Memory consumption over different timeslice counts for an error-tolerance (𝜖) of 1e-07.
Bars not shown did not complete due to running out of memory.

truncation, causing each intermediate TTM result to shrink after

every iteration, thereby requiring less memory. This results in the

out-of-place implementations being able to complete. The effect

of error tolerance on truncation is demonstrated in Table 4. Note

that the Random dataset is not truncated even for the highest error

tolerance. Due to its lack of low-rank structure, the Random dataset

is expected to have high rank. In this case, or when the error toler-

ance approaches 0, all datasets’ intermediate TTM results do not

benefit from truncation and thus require at least ∼ 3× the original

tensor size in memory, resulting in the out-of-place algorithms not

being able to complete for any problem size greater than
1

3
the size

of main memory.

6 CONCLUSIONS AND FUTUREWORK
We have presented two novel optimizations, kernel fusion and ten-

sor tiling, that are aimed at improving the memory locality of the

Sequentially Truncated Higher Order Singular Value Decomposi-

tion algorithm.

This block based approach was then coupled with a novel in-

place transpose algorithm to drastically reduce the memory re-

quirements of the ST-HOSVD. We demonstrated that the resulting

algorithm, the FIST-HOSVD, is capable of computing the Tucker

decomposition of significantly larger tensors than the traditional

ST-HOSVD, without compromising runtime performance.

From here, we aim to port our implementations and optimiza-

tions to the GPU. As previously mentioned, our algorithms are

currently implemented in the Kokkos programming model to fa-

cilitate a GPU port. However, we need several more modifications

to our implementations to ensure optimal performance, although

we expect the general algorithmic structure of the FaST and FIST-

HOSVD to remain the same.

Past literature has shown that GPU applications can especially

benefit from kernel fusion due to memory bandwidth and latency

being major bottle necks of GPU performance. Thus, porting kernel

fusion optimizations and performing similar experiments to those

previously shown is the natural next step. Furthermore, we believe

the FIST-HOSVD can be extended to iteratively process tensor

sections that each fit in a given GPU’s memory. In this way we can

greatly increase the tensor size that a GPU can handle.
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