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ABSTRACT
Joint Nonnegative Matrix Factorization (JointNMF) is a hybrid

method for mining information from datasets that contain both fea-

ture and connection information. We propose distributed-memory

parallelizations of three algorithms for solving the JointNMF prob-

lem based on Alternating Nonnegative Least Squares, Projected

Gradient Descent, and Projected Gauss-Newton. We extend well-

known communication-avoiding algorithms using a single pro-

cessor grid case to our coupled case on two processor grids. We

demonstrate the scalability of the algorithms on up to 960 cores (40

nodes) with 60% parallel efficiency. Themore sophisticated Alternat-

ing Nonnegative Least Squares (ANLS) and Gauss-Newton variants

outperform the first-order gradient descent method in reducing the

objective on large-scale problems. We perform a topic modelling

task on a large corpus of academic papers that consists of over 37

million paper abstracts and nearly a billion citation relationships,

demonstrating the utility and scalability of the methods.
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1 INTRODUCTION
This paper describes the first distributed-memory parallel algo-

rithms for the Joint Nonnegative Matrix Factorization (JointNMF)

problem [7]. JointNMF has been proposed for unsupervised learn-

ing and data mining tasks on attributed graph datasets, where data
points naturally have both nonnegative features and connectivity

(relational) information expressed by a graph [10]. This form ap-

pears in many datasets, including those arising in the analysis of

social networks, document corpora, gene regulatory networks, and

image datasets, among others. For example, consider a corpus of

scholarly documents that one wishes to cluster. The document fea-

tures might be represented by a term-document matrix with entries

derived from Term Frequency-Inverse Document Frequency (tf-idf)

scores, which are nonnegative [19]; and the citations among docu-

ments would form the edges of a graph. One might want both the

features and the graph to inform the clustering, which JointNMF

accomplishes. However, it has been difficult to apply these algo-

rithms at more than a modest scale due to their high computational

and memory costs, thus motivating our work.

The simplest form of JointNMF is as follows. (Section 3 gener-

alizes this formulation, which our new algorithms and software
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can handle via straightforward preprocessing.) Let X ∈ R𝑚×𝑛
+

be the nonnegative features matrix and S ∈ R𝑛×𝑛+ a symmetric

nonnegative connections matrix with S = ST. JointNMF is a Con-

strained Low Rank Approximation (CLRA) method and a natural

extension of the popular data mining methods, Nonnegative Ma-

trix Factorization (NMF) and Symmetric Nonnegative Matrix Fac-

torization (SymNMF), to handle this type of multimodal form of

input [7, 16, 18]. It formulates the optimization problem as

min

W≥0,H≥0
∥X −WH∥2𝐹 + 𝛼




S − HTH



2
𝐹
, (1)

whereW ∈ R𝑚×𝑘
+ andH ∈ R𝑘×𝑛+ are low-rank matrices to be found

with 𝑘 ≪ min(𝑚,𝑛). The hyperparameter 𝛼 ≥ 0 can be tuned to

emphasize which objective, either the features fit or connections

fit, is of more importance to the user. Fusing the two information

sources in the objective permits the use of the CLRA machinery de-

veloped for NMF and SymNMF and makes the results interpretable

without any additional preprocessing or clustering steps [8, 9].

The main sequential algorithms for JointNMF use Block Coordi-

nate Descent (BCD) [7]. They include an Alternating Nonnegative

Least Squares (ANLS) type algorithm for Eq. (1) using a regularized

approach similar to the one developed for SymNMF [18]. However,

direct optimization techniques based on Newton-like methods are

believed to have prohibitive computational and memory costs.

We investigate new parallel algorithms for distributed-memory

systems for both BCD and direct methods, namely, the ANLS vari-

ant of Du et al. [7] and two parallel direct methods Projected Gradi-

ent Descent (PGD) and Projected Gauss-Newton using Conjugate

Gradient (PGNCG) (Section 3). Unlike the inexact Gauss-Newton

method developed for SymNMF [9], PGNCG has stronger guaran-

tees for convergence while still enjoying low computational and

memory requirements. Our methods facilitate reuse of existing

algorithms and software developed for the standard NMF case. We

adopt the communication-optimal ANLS method due to Kannan et

al. and extend it to handle multimodal inputs [14].

We evaluate these methods experimentally (Section 4). Our serial

experiments highlight the superior performance of the ANLS and

PGNCG methods compared to PGD. The parallelization exercise

highlights the different computational challenges that arise when

there are two large input matrices involved in the bottleneck matrix

multiplications. We explore the different processor grid layouts,

optimized for multiplication with X, with S, or both, needed to

handle this case. With appropriate choices, we observe over 60%

parallel efficiency on up to 960 cores distributed across 40 nodes.

These novel JointNMF methods permit scaling to problem sizes

that were previously computationally infeasible. For instance, we

perform topic discovery using JointNMF on a large corpus of over

37 million academic paper abstracts and 0.9 billion citation rela-

tionships for the first time [30, 32]. The PGNCG method achieved

a speedup of 28× when scaling to 48 cores on this sparse dataset

with a memory footprint of 59GB. This initial demonstration paves

the way for new applications of JointNMF, including as a poten-

tially simpler and faster alternative to tensor-based methods for

unsupervised learning and data mining.

Table 1: Costs of certain MPI collectives.

Operation Cost

All-Gather 𝜈 · log𝑝 + 𝜙 · 𝑝−1𝑝 𝑛

Reduce-Scatter 𝜈 · log𝑝 + (𝜙 + 𝜔) · 𝑝−1𝑝 𝑛

All-Reduce 2𝜈 · log𝑝 + (2𝜙 + 𝜔) · 𝑝−1𝑝 𝑛

2 PRELIMINARIES
2.1 Notation
We use bold lowercase fonts for vectors (e.g., x) and bold upper-

case for matrices (e.g., A). For A, its 𝑖th column is a𝑖 . A (𝑖, :) and
A (:, 𝑗) are also used for denoting the 𝑖th row and 𝑗th column of

A, respectively. Elements of A are interchangeably denoted by 𝑎𝑖 𝑗
and A (𝑖, 𝑗). A vector x or matrix X that changes during an iterative

algorithm will be represented as x(𝑡 ) andX(𝑡 )
at iteration 𝑡 . We use

logical indexing for accessing elements of matrices and vectors. For

example, let A ∈ R𝑚×𝑛
and I = {(𝑖, 𝑗) : 0 ≤ A (𝑖, 𝑗) ≤ 1}. Then

A (I) or AI will return all the elements of A which are between

0 and 1. The comparison X ≥ 0 is performed element-wise and

[X]+ for projection on to the nonnegative orthant. The vec(X)
operator vectorizes a matrix by stacking its columns on top of each

other. The Kronecker product between two matrices A ∈ R𝑚×𝑛

and B ∈ R𝑝×𝑞 is defined as

(A ⊗ B)𝑖, 𝑗 = 𝑎⌈𝑖/𝑝 ⌉,⌈ 𝑗/𝑞⌉𝑏 (𝑖−1)%𝑝+1,( 𝑗−1)%𝑞+1 .

P𝑝,𝑞 denotes a commutation matrix that converts a column-major

vectorization of A ∈ R𝑝×𝑞 to row-major, that is

P𝑝,𝑞vec(A) = vec

(
AT

)
.

The distributed-memory algorithms we consider here utilize the

All-Gather, Reduce-Scatter, and All-Reduce Message Passing Inter-

face (MPI) Collectives [4], whose costs are summarized in Table 1.

The costs are modelled using the MPI model with a fixed cost of

𝜔 per flop and 𝜈 + 𝜙𝑛 for sending 𝑛 words between two proces-

sors, where 𝜈 is the per-message latency cost and 𝜙 is the per-word

bandwidth cost.

Throughout the paper we assume that the 𝑝 available processors

are logically arranged in a 𝑝 = 𝑝𝑟 × 𝑝𝑐 grid Π. Global distributed
matrices are shown with the usual bold font, like X and W, with

local matrices shown with the processor subscripts (e.g. X𝑖 𝑗 orW𝑟 )

The input data matrices, X and S, are 2D distributed across the grid

with W and H in conformal 1D distributions (see Fig. 1). Other

matrix distributions are mentioned when required. In Section 3,

we consider the case of using two logical grids of 𝑝 processors,

Π = 𝑝𝑟 × 𝑝𝑐 and Γ = 𝑞𝑟 × 𝑞𝑐 .

2.2 BCD for Nonlinear Optimization
BCD is an iterative process to solve an optimization problem. It

groups variables into several disjoint subgroups and iteratively

solves the variables in a subgroup keeping the others fixed. This

grouping helps when subproblems can be solved quickly or exactly.

Consider the general optimization problem for x ∈ R𝑛 ,

min

x∈C
𝑓 (x) .
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Figure 1: Data distribution of the NMF matrices on a 4 × 3

processor grid. The𝑚 × 𝑛 input matrix X is 2D partitioned,
whereas the factor matrices are 1D partitioned. The rows of
W are placed in row-major order and the columns of H in
column-major order across the grid. The smallest dimension
𝑘 is never split. The local portions of the matrices have the
following sizes: X𝑖 𝑗 is 𝑚

𝑝𝑟
× 𝑛

𝑝𝑐
,W𝑖 is 𝑚

𝑝 × 𝑘 , and H𝑗 is 𝑘 × 𝑛
𝑝 .

Weassume thatC ⊆ R𝑛 can be represented as the Cartesian product,

C = C1 × C2 × . . . C𝑚 , where C𝑖 ⊆ R𝑛𝑖 is closed and convex

with

∑𝑚
𝑖=1 𝑛𝑖 = 𝑛. The input vector is similarly partitioned as x =[

xT
1

xT
2
· · · xT𝑚

]T
. The BCD method generates the next iterate

x(𝑡+1) given the current iterate x(𝑡 ) according to the update rule

x(𝑡+1)
𝑖

= min

z∈C𝑖
𝑓

(
x(𝑡+1)
1

, x(𝑡+1)
2

, . . . , x(𝑡+1)
𝑖−1 , z, x(𝑡 )

𝑖+1, . . . , x
(𝑡 )
𝑚

)
.

This scheme uses the most recently updated values of all the fixed

blocks and ensures that the objective value never increases. The

convergence of BCD is discussed elsewhere [3, 12, 16].

2.3 Direct Optimization Overview
We use the Projected Gradient Descent and an inexact Gauss-

Newton (GN) methods for the optimization, min

x≥0
𝑓 (x). For PGD,

we use the momentum variant, which accelerates gradient descent

and dampens oscillations [26, 27]. Let p(𝑡 ) be the step taken by the

algorithm at iteration 𝑡 . PGD’s updates take the form,

p(𝑡 ) = 𝛾p(𝑡−1) + ∇x 𝑓

∥∇x 𝑓 ∥
,

x(𝑡 ) =
[
x(𝑡−1) − 𝜆p(𝑡 )

]
+
.

Here, 𝛾 ≥ 0 is the momentum parameter and 𝜆 ≥ 0 is the step size,

which is found via experiment. p(0) is initialized as 0.
The GNmethod minimizes a sum of squares of residual functions

of the form 𝑓 (x) = 1

2

∑
𝑙 𝑟𝑙 (x)2. It starts with an initial guess x(0)

and follows the iteration:

x(𝑡+1) =

[
x(𝑡 ) − argmin

p




J(𝑡 )p − r(𝑡 )



2
2

]
+
.

Here J(𝑡 ) is the Jacobianmatrix defined as J(𝑡 )
𝑙𝑞

=
𝜕𝑟𝑙
𝜕x𝑞 (x

(𝑡 ) ) and r(𝑡 )

is a vector of the residual function values 𝑟𝑙 (x(𝑡 ) ). This iteration is

performed until some stopping criteria is met. We solve the linear

least-squares problem via the normal equations. The GN method is

a second-order optimization method where the matrix JTJ acts as
an approximate Hessian matrix for 𝑓 [3]. We can use an iterative

method, like Conjugate Gradient (CG), to efficiently solve for p by

only applying J and JT such that,(
J(𝑡 )

T
J(𝑡 )

)
p = J(𝑡 )

T
r(𝑡 ) = g(𝑡 ) .

The right hand side of the equation is the gradient evaluated at x(𝑡 ) .
If the least-squares problem for p is only approximately solved, the

method is known as an inexact GN algorithm.

To converge in the constrained case, i.e., x ≥ 0, we need to

modify J(𝑡 )
T
J(𝑡 ) to handle variables whose constraints are active [2].

Denote these active variables by

A =

{
𝑖 : 0 ≤ 𝑥

(𝑡 )
𝑖

≤ 𝜖 and

𝜕𝑓

𝜕𝑥
(𝑡 )
𝑖

> 0

}
,

where 𝜖 is a small constant. The complement of A is the set of free

variables F = {1, . . . , 𝑛} \ A. Without loss of generality, assume

x(𝑡 ) is permuted like

[
x(𝑡 )F
x(𝑡 )A

]
. The step direction solves

(
J(𝑡 )

T
J(𝑡 )

)
F
pF = g(𝑡 )F and pA = g(𝑡 )A ,

where

(
J(𝑡 )

T
J(𝑡 )

)
F
is the approximate Hessian whose rows and

columns are restricted to the ones corresponding to the free vari-

ables. Second-order information is captured for the free variables

whereas the active ones are kept fixed at the constraints. Bertsekas

shows that these scaling matrices result in p being a descent direc-

tion, andwith an appropriate step size 𝜆, such an iterative procedure

converges to a stationary point [2].

We use a variant of backtracking line search to step in a direction

that reduces the objective for both PGD and PGNCG [3, 29].

2.4 Parallel NMF Algorithms
Our implementation of JointNMF is built on top of Parallel Low-

rank Approximation with Nonnegativity Constraints (PLANC), an

open-source library for NMF [8, 14]. PLANC is designed to solve

the optimization problem

min

W≥0,H≥0
∥X −WH∥2𝐹 (2)

for dense or sparse, nonnegative input matrices X ∈ R𝑚×𝑛
+ and

low-rank matrices W ∈ R𝑚×𝑘
+ and H ∈ R𝑘×𝑛+ with 𝑘 ≪ min (𝑚,𝑛).

It contains various algorithms for computing NMF, including both

BCD and direct optimization variants.
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Algorithm 1 Gram Computation

Require: Π a 𝑝𝑟 × 𝑝𝑐 processor grid.

Require: B ∈ R𝑝×𝑘+ is row-wise distributed across the grid.

Ensure: BTB is stored redundantly on all processors.

1: function [G] = gram(Π,B)
2: (𝑖, 𝑗) = MyRank(Π) ⊲ Processor rank

3: 𝑟 = (𝑖 − 1) 𝑝𝑐 + 𝑗 ⊲ Row-major rank

4: Ĝ𝑟 = BT𝑟 B𝑟
5: G = All-Reduce(Ĝ𝑟 )
6: end function

Algorithm 2 2D Matrix Multiplication

Require: Π a 𝑝𝑟 × 𝑝𝑐 processor grid.

Require: A ∈ R𝑝×𝑞+ is 2D distributed across the grid.

Require: B ∈ R𝑝×𝑘+ is row-wise distributed across the grid.

Ensure: BTA is column-distributed across the grid.

1: function [C] = 2Dmatmul(Π,A,B)
2: (𝑖, 𝑗) = MyRank(Π) ⊲ Processor rank

3: 𝑟 = (𝑖 − 1) 𝑝𝑐 + 𝑗 ⊲ Row-major rank

4: 𝑐 = ( 𝑗 − 1) 𝑝𝑟 + 𝑖 ⊲ Col-major rank

5: B̂𝑖 = All-Gather(B𝑟 ,Π (𝑖, :))
6: Ĉ𝑗 = B̂T𝑖 A𝑖 𝑗

7: C𝑐 = Reduce-Scatter(Ĉ𝑗 ,Π (:, 𝑗)) ⊲ Column-wise

distributed

8: end function

Matrix multiplication is the computational bottleneck of NMF

with most algorithms needing to compute WTW, HHT
, WTX, and

HXT
. PLANC uses communication-optimal matrix multiplication

algorithms for each of these operations [1, 5], via a 2D distribution of

X over a 𝑝𝑟 ×𝑝𝑐 grid of processors with conformal 1D distributions

for the factor matricesW and H as shown in Fig. 1. A 2D algorithm

is used to compute WTX and HXT
. PLANC does not communicate

any of the data matrix elements. In the case of dense X, Kannan
et al. show that selecting

𝑝𝑟
𝑝𝑐

≈ 𝑚
𝑛 minimizes the number of words

transferred in the multiplications [13].

The full two-block BCD algorithm for NMF is shown in Algo-

rithm 3. In each outer iteration, Line 6 in Algorithm 3, we alternately

fixH and updateW using a Nonnegative Least Squares (NLS) solver

(Line 9) and then solve for H fixingW (Line 12). The pseudocode

for the two different types of matrix multiplication are shown in

Algorithm 2 and Algorithm 1. Algorithm 1 computes the Gram

matricesWTW and HHT
, whereas Algorithm 2 involves multipli-

cations with the large data matrix X. Notice that the NLS updates,
Lines 9 and 12, are local and do not involve any communication.

2.5 Additional Related Work
The fusion of multiple information sources is common in CLRA.

Various formulations of fusing multiple features and connections

matrices with different constraints exist for clustering [7, 21, 31, 34]

and anomaly detection [10, 22, 25]. In both settings the fusion of

information sources has been shown to be more effective than

working on individual portions of the data. Most of the clustering

methods are for unsupervised graph mining, however Whang et

al. [34] has also extended this approach to hypergraphs and to

Algorithm 3 Communication-avoiding parallel NMF [13]

Ensure: W,H ≈ argmin

W≥0,H≥0
∥X −WH∥2

𝐹
.

1: function [W,H] = ParNMF(Π,X, 𝑘)
2: (𝑖, 𝑗) = myrank(Π) ⊲ Processor rank

3: 𝑟 = (𝑖 − 1) 𝑝𝑐 + 𝑗 ⊲ Row-major rank

4: 𝑐 = ( 𝑗 − 1) 𝑝𝑟 + 𝑖 ⊲ Column-major rank

5: Initialise H(0)
𝑐

6: while 𝑡 = 1, 2, . . . do ⊲ Till some stopping condition is met.

% ComputeW given H

7: GH = gram

(
ΠT,

(
H(𝑡−1)

)T)
8: RH = 2Dmatmul

(
ΠT,XT,

(
H(𝑡−1)

)T)
9: W(𝑡 )

𝑟 = update

(
GH,RH𝑟

)
⊲ NLS update

% Compute H givenW
10: GW = gram

(
Π,W(𝑡 )

)
11: RW = 2Dmatmul

(
Π,X,W(𝑡 )

)
12: H(𝑡 )

𝑐 = update

(
GW,RW𝑐

)
⊲ NLS update

13: end while
14: end function

the semi-supervised case. For more information on the different

formulations, we refer the reader elsewhere [6].

The PGD and projected Gauss-Newton methods are staples of

modern optimization [3, 23] and have been used for CLRA [20, 29,

33]. In this context, we are primarily focused on the momentum

variant of PGD [26, 27] and the box-constrained version of Gauss-

Newton [2]. While these methods have been developed for general

optimization, our approach is the first known treatment of these

methods for JointNMF in the distributed-memory setting.

3 ALGORITHMS FOR JOINTNMF
3.1 Extending to Multiple Inputs
The most common form of JointNMF is the optimization problem

involving a single features and connections matrix, respectively

denoted X and S, as shown in Eq. (1). This formulation can be

extended to more than two inputs as follows:

min

{W1,...,W𝑝 ,H}≥0

𝑝∑︁
𝑖=1

𝛾𝑖 ∥X𝑖 −W𝑖H∥2𝐹 +
𝑞∑︁
𝑗=1

𝛼 𝑗




S𝑗 − HTH



2
𝐹

(3)

Note that the H is common to all terms in the objective. Using this

joint formula, we are able to incorporate all the input sources at the

objective level and obtain a single embeddingmatrix. Clustering and

other data mining tasks can now work off this single embedding.

We shall now show the equivalence between Eq. (3) and Eq. (1). In

the features term, we can combine the 𝑝 different terms as follows:

𝑝∑︁
𝑖=1

𝛾𝑖 ∥X𝑖 −W𝑖H∥2𝐹 =










√
𝛾1X1

.

.

.√
𝛾𝑝X𝑝

 −

√
𝛾1W1

.

.

.√
𝛾𝑝W𝑝

 H








2

𝐹

=


X̂ − ŴH



2
𝐹

Thus, optimizing with X̂ is the same.
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The same trick for the connection matrices is not as straight-

forward. That can be seen by induction, working first with two

matrices, S1 and S2. Let Y = HTH, 𝛼 = 𝛼1 + 𝛼2, and Ŝ =
𝛼1S1+𝛼2S2
𝛼1+𝛼2

.

Now let us look at the difference 𝛼


Ŝ − Y



2
𝐹
−∑

2

𝑗=1 𝛼 𝑗


S𝑗 − Y



2
𝐹
.

The (𝑖, 𝑗) entry of this difference can be shown to be equal to

−𝛼1𝛼2 (S1 (𝑖, 𝑗) − S2 (𝑖, 𝑗))2. The difference only depends on S1 and
S2 and not Y = HTH. Therefore, solving with Ŝ in Eq. (1) will result

in the same solution as using S1 and S2 in Eq. (3). The objective

values will differ by a constant, which does not affect the solution

H. By induction, we can replace the 𝑞 inputs (𝛼𝑖 , S𝑖 ) with a single

input

(∑𝑞

𝑗=1
𝛼 𝑗 ,

∑𝑞

𝑗=1
𝛼 𝑗 S𝑗∑𝑞

𝑗=1
𝛼 𝑗

)
.

Therefore, the original formulation, Eq. (1), is versatile enough

to handle multiple information sources via simple preprocessing,

so we can focus on this case for parallelization.

3.2 JointNMF via ANLS
Du et al. solve Eq. (1) by dropping the symmetric constraint and

using a penalty term [7]. They propose the surrogate optimization,

min

W≥0,H≥0,Ĥ≥0
∥X −WH∥2𝐹 + 𝛼




S − ĤTH



2
𝐹
+ 𝛽



Ĥ − H


2
𝐹
,

where Ĥ ∈ R𝑘×𝑛+ and 𝛽 ≥ 0 is the regularization parameter. This

formulation is motivated by a similar one for the SymNMF prob-

lem [9, 17]. It can be solved using a three-block BCD scheme, up-

dating W, Ĥ, and H in turn. The following NLS subproblems are

iteratively solved.

min

W≥0




HTWT − XT



2
𝐹

(4)

min

Ĥ≥0





[√𝛼HT√︁
𝛽I𝑘

]
Ĥ −

[√
𝛼S√︁
𝛽H

]



2
𝐹

(5)

min

H≥0











W
√
𝛼ĤT√︁
𝛽I𝑘

 H −


X√
𝛼S√︁
𝛽Ĥ










2

𝐹

(6)

The major computations for this ANLS version of JointNMF are

the matrix calculations needed for computing the gradients. These

are the Gram calculations HHT
, 𝛼HHT + 𝛽I𝑘 , and WTW + 𝛼ĤĤT +

𝛽I𝑘 and the large ones involving the input matrices HXT, 𝛼HS +
𝛽H,WTX + 𝛼ĤS + 𝛽Ĥ. We use the Block Principal Pivoting algo-

rithm as the NLS solver [15]. The computational cost of solving

ℓ NLS problems, i.e. the multiple right hand sides, in 𝑟 variables

is 𝑂
(
ℓ𝑟3𝑠AS

)
, where 𝑠AS ≤ 2

𝑟
is the number of active sets ex-

plored [12]. In practice however, 𝑠AS is typically much smaller than

2
𝑟
.

3.3 JointNMF via PGD
PGD is a straightforward way to address Eq. (1). The gradients with

respect to the factor matrices are

∇W 𝑓 = 2

(
WHHT − XHT

)
∇H 𝑓 = 2

(
WTWH −WTX

)
+ 4𝛼

(
HHTH − HS

)
.

Algorithm 4 Compute Gradient

Require: C ∈ R𝑘×𝑛+ is a copy of H column-wise distributed across

the grid Γ.

Ensure: Gradient ∇W 𝑓 = 2(WHHT − XHT) ∈ R𝑚×𝑘
row-wise

distributed across the grid Π.
Ensure: Gradient ∇H 𝑓 = 2(WTWH−WTX) + 4𝛼 (HHTH−HS) ∈
R𝑘×𝑛 column-wise distributed across the grid Π.

1: function [∇W,∇H] = ComputeGradient(X,Π, S, Γ,W,H)
2: (𝑖, 𝑗) = myrank(Π) ⊲ Processor rank

3: 𝑟 = (𝑖 − 1) 𝑝𝑐 + 𝑗 ⊲ Row-major rank

4: 𝑐 = ( 𝑗 − 1) 𝑝𝑟 + 𝑖 ⊲ Column-major rank

% Compute ∇W
5: GH = gram(ΠT,HT) ⊲ Gram redundantly stored on Π
6: LW𝑟 = W𝑟GH
7: RW = 2Dmatmul(ΠT,X,HT) ⊲ H row-wise on ΠT

8: ∇W𝑟 = 2(LW𝑟 − RW𝑟 )
% Compute ∇H

9: GW = gram(Π,W) ⊲ Gram redundantly stored on Π
10: LH𝑐 = (2GW + 4𝛼GH)H𝑐

11: RHX = 2Dmatmul(Π,X,W)
12: RHS = 2Dmatmul(ΓT, ST,CT) ⊲ C is the copy of H on Γ

13: RHS = redist

(
RHS, Γ,ΠT

)
⊲ Send from grid Γ to ΠT

14: ∇H𝑐 = (2RHX𝑐 + 4𝛼RHS𝑐 ) − LH𝑐
15: end function

Let P(𝑡 )W and P(𝑡 )H be the steps taken at iteration 𝑡 for the factors

W and H, respectively. Then the updates via PGD are

P(𝑡 )W = 𝛾P(𝑡−1)W + ∇W 𝑓

∥∇W 𝑓 ∥𝐹
W(𝑡 ) =

[
W(𝑡−1) − 𝜆P(𝑡 )W

]
+

P(𝑡 )H = 𝛾P(𝑡−1)H + ∇H 𝑓

∥∇H 𝑓 ∥𝐹
H(𝑡 ) =

[
H(𝑡−1) − 𝜆P(𝑡 )H

]
+
.

As in the ANLS case, the computational bottlenecks are a subset

of matrix multiplications,WTW,HHT,WTX,XHT, and HS.

3.4 JointNMF via PGNCG
To apply PGNCG to the JointNMF objective in Eq. (1), consider the

vectorized residuals,

r =
[
rX
rS

]
=

[
vec(X −WH)

√
𝛼vec

(
S − HTH

)] ∈ R𝑚𝑛+𝑛2

.

The Jacobian for Eq. (1) is a 2 × 2 block matrix of the form

J =

[
𝜕rX

𝜕vec(W)
𝜕rX

𝜕vec(H)
𝜕rS

𝜕vec(W)
𝜕rS

𝜕vec(H)

]
= −

[
HT ⊗ I𝑚 I𝑛 ⊗ W

0
√
𝛼

((
I𝑛 ⊗ HT

)
+
(
HT ⊗ I𝑛

)
P𝑘,𝑛

)]
.

We can easily verify that 2JTr gives the gradient. Applying JTJ to

a vector x =

[
vec(XW)
vec(XH)

]
results in y =

[
vec(YW)
vec(YH)

]
. Exploiting the
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structure of J we get

YW = XWHHT +WXHHT

YH =

(
WTXWH +WTWH

)
+ 2𝛼

(
HHTXH + HXT

HH
)
.

Computing the gradient requiresmultiplicationwithX and Swhereas
applying the Gramian of the Jacobian involves only𝑚 × 𝑘 , 𝑛 × 𝑘 ,

and 𝑘 × 𝑘 matrices.

We drop the extra constant and work with JTr and JTJ for the
PGNCG step. First, identifying the active-set can be done indepen-

dently at every processor via checking their local portions of the

factor matrices and gradients, as follows.

AW = {(𝑖, 𝑗) : 0 ≤ W (𝑖, 𝑗) ≤ 𝜖,∇W 𝑓 (𝑖, 𝑗) > 0}
AH = {(𝑖, 𝑗) : 0 ≤ H (𝑖, 𝑗) ≤ 𝜖,∇H 𝑓 (𝑖, 𝑗) > 0}

The complements of the active-sets are the free variables FW and

FH. Instead of using the exact active-set with H (𝑖, 𝑗) = 0, a small

fixed scalar 𝜖 prevents zigzagging of the solution [3]. To compute the

correct step, before starting the CG iterations wemask the gradients

as ∇W 𝑓 (AW) = 0 and ∇H 𝑓 (AH) = 0. When applying JTJ, we
mask the outputs YW (AW) = 0 and YH (AH) = 0. Finally, the step

directions of the active variables are set to the gradient [2, 29, 33].

We limit the inner CG solver to a maximum of 𝑠CG iterations.

Algorithm 5 Apply approximate Hessian

Require: XW ∈ R𝑚×𝑘
+ row-wise distributed across the grid Π.

Require: XH ∈ R𝑘×𝑛+ column-wise distributed across the grid Π.

Ensure: YW = XWHHT +WXHHT ∈ R𝑚×𝑘
row-wise distributed

across the grid Π.

Ensure: YH = WTXWH + WTWH + 2𝛼

(
HHTXH + HXT

HH
)

∈
R𝑘×𝑛 column-wise distributed across the grid Π.

1: function [YW,YH] = ApplyHessian(X,Π, S, Γ,W,H)
2: (𝑖, 𝑗) = myrank(Π) ⊲ Processor rank

3: 𝑟 = (𝑖 − 1) 𝑝𝑐 + 𝑗 ⊲ Row-major rank

4: 𝑐 = ( 𝑗 − 1) 𝑝𝑟 + 𝑖 ⊲ Column-major rank

% Compute YW
5: GH = gram(ΠT,HT) ⊲ Redundantly stored

6: GXH = innerprod(ΠT,XT
H,H

T) ⊲ Redundantly stored

7: YW𝑟 = XW𝑟GH +W𝑟GXH
8: maskactiveset(YW𝑟 )

% Compute YH
9: GW = gram(Π,W) ⊲ Redundantly stored

10: GWX = innerprod(Π,W,XW) ⊲ Redundantly stored

11: YH𝑐 = GWXH𝑐 + GWH𝑐 + 2𝛼 (GHXH𝑐 + GXHH𝑐 )
12: maskactiveset(YH𝑐 )
13: end function

We compare the costs of the different JointNMF algorithms in Ta-

ble 2 for dense inputsX and S. The only difference in the sparse case
is the computation costs of multiplication with the input matrices

(e.g.WTXwill cost 2nnz(X)𝑘 instead of 2𝑚𝑛𝑘). The communication

costs remain the same as only dense matrices are transmitted.

3.5 Changes from NMF and SymNMF
Differences in parallelization strategies for JointNMF arise from

having two large input matrices. The communication costs for the

four multiplications are given below, assuming we are working

with a 𝑝𝑟 × 𝑝𝑐 grid of 𝑝 processors.
1

𝑇comm

(
WTX

)
= 2𝜈 log 𝑝 + 𝜙

(
𝑚𝑘

𝑝
(𝑝𝑐 − 1) + 𝑛𝑘

𝑝
(𝑝𝑟 − 1)

)
𝑇comm

(
HXT

)
= 2𝜈 log 𝑝 + 𝜙

(
𝑚𝑘

𝑝
(𝑝𝑐 − 1) + 𝑛𝑘

𝑝
(𝑝𝑟 − 1)

)
𝑇comm

(
ĤTS

)
= 2𝜈 log 𝑝 + 𝜙

(
𝑛𝑘

𝑝
(𝑝𝑐 − 1) + 𝑛𝑘

𝑝
(𝑝𝑟 − 1)

)
𝑇comm (HS) = 2𝜈 log 𝑝 + 𝜙

(
𝑛𝑘

𝑝
(𝑝𝑐 − 1) + 𝑛𝑘

𝑝
(𝑝𝑟 − 1)

)
The total words communicated is

(2𝑚+2𝑛)𝑘
𝑝 (𝑝𝑐 − 1) + 4𝑛𝑘

𝑝 (𝑝𝑟 − 1),
the same as a 2Dmultiplicationwith a largematrix of size (2𝑚 + 2𝑛)×
4𝑛. Thus, a processor grid with aspect ratio

𝑝𝑟
𝑝𝑐

≈ 2𝑚+2𝑛
4𝑛 = 𝑚+𝑛

2𝑛

will be communication efficient, and for the PGD and PGNCG al-

gorithms,
𝑝𝑟
𝑝𝑐

≈ 2𝑚+𝑛
3𝑛 .

An alternative is to logically partition the 𝑝 processors into two

grids: 𝑝 = 𝑝𝑟 × 𝑝𝑐 = 𝑞𝑟 × 𝑞𝑐 . The aspect ratio of one grid could

approximate that of X whereas the other would be closer to that of

S. Thus, we could be theoretically communication-optimal for all

matrix multiplications. However, the factor H must be duplicated

on both grids since it needs to be multiplied by both X and S. Care
must be taken to ensure that these copies of H are kept in sync.

We analyze the differences in the bandwidth term for the single

and double grid configuration for the ANLS algorithm. Using the

optimal grid configuration,
𝑝𝑟
𝑝𝑐

= 𝑚+𝑛
2𝑛 , we have 𝑝𝑟 =

√︃
𝑚+𝑛
2𝑛

√
𝑝 and

𝑝𝑐 =

√︃
2𝑛

𝑚+𝑛
√
𝑝 . Plugging these into the bandwidth component of

the communication costs, we have

𝑊1G =
4𝑛𝑘 − 4

𝑝
(𝑝𝑐−1) +

2𝑚𝑘 + 2𝑛𝑘 − 4

𝑝
(𝑝𝑟−1) >

4

√
2𝑘

√
𝑝

√︁
𝑚𝑛 + 𝑛2 .

Similarly, we can get the words communicated in the two grids

case as𝑊2G ≈ 4𝑘√
𝑝

(√
𝑚𝑛 + 𝑛

)
. Now using the 1-norm inequality in

𝑑 dimensions, ∥·∥
2
≤ ∥·∥

1
≤
√
𝑑 ∥·∥

2
, we get 1 ≤ 𝑊1G

𝑊2G

≤
√
2. Thus

the two-grid configuration always communicates less data with a

maximum savings of 41% in terms of words communicated.

Similar analysis of the PGD and PGNCG algorithms, which only

employ three large matrix multiplications, yields the ratio

𝑊1G

𝑊2G

=
√
3

√
2𝑚𝑛 + 𝑛2
2

√
𝑚𝑛 + 𝑛

.

The minimum value for this ratio is 1, obtained when𝑚 = 𝑛. Hence,

the two-grid setting always communicates less data, and we will

see minimal gains when 𝑚 ≈ 𝑛. However, when 𝑛 ≫ 𝑚 we can

expect an improvement factor up to

√
3, and

√︃
3

2
in the 𝑚 ≫ 𝑛

scenario.

1
We can eliminate an extra All-Gather term from either HS or HXT

by selecting the

update order to ensure that H is updated last in every inner iteration. We ignore this

improvement in our analysis but it is straightforward to include. Doing so changes

the optimal aspect ratio to
2𝑚+𝑛
4𝑛

.
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Table 2: Per-iteration costs for the different JointNMF algorithms for𝑚 × 𝑛 and 𝑛 × 𝑛 data matrices and rank 𝑘 .

Algorithm (Hyperparameters) Large Matmuls Messages Words Computation

ANLS (𝛽) 4 𝑂 (log𝑝) 𝑂
(
𝑘2 + (𝑘

√
𝑚𝑛 + 𝑛𝑘)/√𝑝

)
𝑂
( (
4𝑚𝑛𝑘 + 4𝑛2𝑘 + 𝑠AS (𝑚 + 𝑛) 𝑘3

)
/𝑝

)
PGD (𝛾 ) 3 𝑂 (log 𝑝) 𝑂

(
𝑘2 + (𝑘

√
𝑚𝑛 + 𝑛𝑘)/√𝑝

)
𝑂
( (
4𝑚𝑛𝑘 + 2𝑛2𝑘 + (𝑚 + 𝑛) 𝑘

)
/𝑝

)
PGNCG (𝑠CG) 3 𝑂 (𝑠CG log𝑝) 𝑂

(
𝑠CG𝑘

2 + (𝑘
√
𝑚𝑛 + 𝑛𝑘)/√𝑝

)
𝑂
( (
4𝑚𝑛𝑘 + 2𝑛2𝑘 + 𝑠CG (𝑚 + 𝑛) 𝑘2

)
/𝑝

)
Algorithm 6 JointNMF via ANLS (two grids)

Require: ĤT ∈ R𝑛×𝑘+ is row-wise distributed across grid Γ.

Require: C ∈ R𝑘×𝑛+ is a copy of H column-wise distributed across

grid Γ.

Ensure: W,H ≈ min

W≥0,H≥0
∥X −WH∥2

𝐹
+ 𝛼



S − HTH


2
𝐹
.

1: function [W,H, Ĥ] = ParJANLS(X,Π, S, Γ, 𝑘, 𝛼, 𝛽)
2: (𝑖, 𝑗) = myrank(Π) ⊲ Π Processor rank

3: 𝑟 = (𝑖 − 1) 𝑝𝑐 + 𝑗 ⊲ Π Row-major rank

4: 𝑐 = ( 𝑗 − 1) 𝑝𝑟 + 𝑖 ⊲ Π Column-major rank

5: (𝑥,𝑦) = myrank(Γ) ⊲ Γ Processor rank

6: 𝑢 = (𝑥 − 1) 𝑞𝑐 + 𝑦 ⊲ Γ Row-major rank

7: 𝑣 = (𝑦 − 1) 𝑞𝑟 + 𝑥 ⊲ Γ Column-major rank

8: Initialise H(0)

9: C(0)
= redist(H(0) ,ΠT, ΓT)⊲ C is a copy of H in the Γ grid

10: while 𝑡 = 1, 2, . . . do ⊲ Till some stopping condition is met

% ComputeW given H

11: GH = gram

(
ΠT,

(
H(𝑡 )

)T)
12: RH = 2Dmatmul

(
ΠT,XT,

(
H(𝑡 )

)T)
13: W(𝑡 )

𝑟 = update(GH,RH𝑟 ) ⊲ NLS update

% Compute Ĥ given W,H
14: LĤ = GH + 𝛽I𝑘

15: MĤ = 2Dmatmul

(
ΓT, ST,

(
C(𝑡 )

)T)
16: NĤ = redist(C, ΓT, Γ) ⊲ Swap within Γ grid

17: RĤ𝑢 = 𝛼MĤ𝑢 + 𝛽NĤ𝑢

18: Ĥ(𝑡 )
𝑢 = update

(
LĤ,RĤ𝑢

)
⊲ NLS update

% Compute H given W, Ĥ
19: GW = gram(Π,W(𝑡 ) )
20: GĤ = gram

(
Γ, Ĥ(𝑡 ) )

21: LH = GW + 𝛼GĤ + 𝛽I𝑘
22: MH = 2Dmatmul(Π,X,W(𝑡 ) )
23: KH = 2Dmatmul(Γ, S, Ĥ(𝑡 ) )
24: NH = redist(Ĥ(𝑡 )

, ΓT, Γ) ⊲ Swap within Γ grid

25: DH𝑣 = 𝛼KH𝑣 + 𝛽NH𝑣

26: DH = redist(DH, Γ,Π
T) ⊲ Swap from Γ to Π grid

27: RH𝑐 = MH𝑐 + DH𝑐
28: H(𝑡 )

𝑐 = update(LH,RH𝑐 ) ⊲ NLS update

29: C(𝑡 ) = redist(H(𝑡 ) ,ΠT, ΓT)
30: end while
31: end function

Both grid choices introduce extra communication. First, the dis-

tribution of a symmetric matrix S in a rectangular processor grid

causes the swaps to occur when incorporating symmetric regular-

ization (i.e. when the matrix product HS changes to 𝛼HS+ 𝛽H). Sec-
ond, computing the gradient of H requires additions with column-

order 1D distributedWTX and row-order 1D distributed HS. Third,
synchronizing the shared H between the grids in the double grid

case needs extra communication. It can be shown that a single

processor will need to send information to at most two other pro-

cessors and similarly receive messages from at most two others. For

example, this can be seen for communicating H by noticing that

each processor owns

⌈
𝑛
𝑝

⌉
or

⌊
𝑛
𝑝

⌋
contiguous columns of H. This

property is violated when transferring these columns to three other

contiguous processors. Thus these “swap” communications incur a

small additive cost.

4 EXPERIMENTS
4.1 Experimental Setup
TheMatlab experiments were performed on a server with two Intel

®

Xeon
®
E5-2680 v3 CPUs and 377GB of DDR4-2,133MHz DRAM.

All distributed-memory experiments were run on the PACE Phoenix

cluster at the Georgia Institute of Technology, wherein each node is

equipped with a single Dual Intel
®
Xeon

®
Gold 6226 2.7 CPU and

between 192-768GB of DDR4-2,933MHz DRAM [24]. Each CPU

has 2 sockets each with 12 cores per socket for a total of 24 cores

per node. The implementations were compiled using GCC 8.3.0

and CMake 3.20.3. PLANC uses the Armadillo linear algebra library

for matrix representations and operations [28] and was linked to

Armadillo 11.1 for all experiments. Sparse matrix operations utilized

Armadillo’s default sparse matrix functionality, whilst OpenBLAS

0.3.13 was used for all dense operations [35]. All experiments were

run using OpenMPI 3.1.6 in the “flat” MPI setting [11], i.e. each core

is assigned to a different single-threaded MPI process.

4.2 Datasets
The scaling experiments for this studywere conducted on dense and

sparse synthetic inputs. These densematrices are created as nonneg-

ative low-rank matrices by multiplying a randomly generatedW
and H. For the sparse case, we created uniformly random matrices

with a density of 0.05. All our timings are averaged over 4 different

runs of 10 and 5 outer iterations for the dense and sparse cases

respectively. We use 𝛾 = 0.9 for PGD as suggested by Ruder [27].

We use the default ANLS hyperparameters of 𝛼 = ∥X∥2
𝐹
/∥S∥2

𝐹
and

𝛽 = 𝛼 max (S) as mentioned by Du et al [7]. This gives equal impor-

tance to both the features and connections objectives. For PGNCG

we found that setting the inner CG iterations (𝑠CG) to 20 gave us

the best results in terms of minimizing the residual.
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Table 3: Convergence studies on the different JointNMF al-
gorithms. The relative objective, time taken, and number of
function evaluations. The best performing method is high-
lighted in bold.

Input Algorithm Rel. Obj. Time Func. Eval.

Dense

PGD 0.5117 56.78 s 28,659.0

ANLS 0.0002 36.27 s 1,000.0
PGNCG 0.0042 22.77 s 1,288.2

Sparse

PGD 0.9587 49.62 s 11,947.6

ANLS 0.8589 55.03 s 1,000.0
PGNCG 0.8597 30.01 s 1,036.0

Y04

PGD 0.9948 420.98 s 1,716.0

ANLS 0.9028 101.41 s 100.0
PGNCG 0.8870 49.86 s 100.0

Two real world datasets were used in these experiments. Mat-

lab convergence experiments were run on a patent dataset [7].

Each patent is encoded via tf-idf and its citations generate the con-

nections matrix. We use the Y04 collection of patents which has

X ∈ R8,142×3,242+ and S ∈ R3,242×3,242+ . The densities for X and S are
0.0141 and 0.0041, respectively.

Large scale real world experiments were run on a subset of the

Microsoft Open Academic Graph (OAG) [36], a dataset consisting

of a unification of the Microsoft Academic Graph (MAG) [30] and

ArnetMiner (AMiner) [32] academic graphs each respectively con-

taining 166,192,182 and 154,771,162 papers. From this dataset, a

subset of 37,732,477 papers with available abstracts and citation

information were selected. These abstracts were preprocessed using

stop words and stemming to form a vocabulary of 1,333 unique

words. Together this vocabulary and corpus of papers were used

to form a sparse 1,333 × 37,732,477 term-document matrix with

1,295,114,641 nonzeros, wherein each column represents a paper

as a tf-idf vector. The resulting matrix was used as the X in the

real world experiments. The symmetric graph Laplacian matrix S
was then formed from the citation graph. Each of the 966,206,008

nonzeros of the resulting 37,732,477 × 37,732,477 matrix represents

a citation between two papers. The Matrix Market file size of the X
and S matrices were respectively 41GB and 17.5GB. The resulting

dataset is referred to as the AMinerMAG dataset from here on. Fig. 7

and Table 5 respectively contain scaling and text clustering results

from this dataset.
2

4.3 Convergence Studies
We test the Matlab performance of our proposed JointNMF algo-

rithms, PGD and PGNCG, on three different datasets and compare

against the ANLS version of Du et al. [7]. The dense synthetic input

consists of true low-rank inputs X = WH and S = HTH which are

perturbed by 1% Gaussian random noise. The dimensions for the

dense case were𝑚 = 1,000, 𝑛 = 600, and 𝑘 = 30. The sparse syn-

thetic case is a uniform random matrix for X and normal random

matrix for S generated using Matlab’s sprandsym function. The

negative values in S have their signs flipped to become nonnega-

tive. Here the dimensions were𝑚 = 1,000, 𝑛 = 600, and we choose

2
Code and dataset information can be found at: https://github.com/ramkikannan/planc.
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Figure 2: JointNMF convergence for the first 3 seconds and
100 function evaluations of the dense synthetic run. PGNCG
displays the fastest drop in objective. ANLS steadily decreases,
eventually surpassing PGNCG around 25 seconds (out of the
graph). PGD initially decreases the objective, but plateaus
soon after.

𝑘 = 30. Both matrices have approximate densities of 0.1. Finally,

we test convergence on the Y04 patent dataset with 𝑘 = 76.

We run each algorithm five times with different random seeds.

We used 1000 and 100 outer iterations for the synthetic and Y04

datasets respectively. PGD needed 2× and 10×more outer iterations

to reduce the objective to a reasonable amount. All the methods

are initialised with the same starting guessesW(0)
and H(0)

. The

average results over the runs are shown in Table 3. Apart from

relative objective and running time, we also capture the number

of times the objective is evaluated. Since PGD and PGNCG employ

a line search, they can perform more function evaluations than

the ANLS method for the same number of outer iterations. ANLS

performs one function evaluation per outer iteration.

Table 3 shows the final relative objective achieved by the three

algorithms. It is evident that PGD converges more slowly than

the other two methods. Regarding the rate of convergence for the

dense case in Fig. 2, while PGD is able to perform each update

quickly it is not able to decrease the objective sufficiently. This

slow rate of convergence results in a large number of function calls

and later knee points for PGD than ANLS and PGNCG. Perhaps

a more aggressive line search method might alleviate this slow

convergence of PGD. This observation suggests the use of more

accurate update methods than simple gradient descent.

It is more difficult to distinguish between the PGNCG and ANLS.

A surprising finding is that PGNCG runs approximately 37-51%

faster even though it performs more function evaluations than

ANLS. There are two possible explanations for this behaviour. ANLS

performs an extra large matrix multiplication per function evalu-

ation (ĤS) when compared to PGNCG, which could be expensive.

The second is that the inexact CG iterations of PGNCG might be

running faster than the exact NLS solve employed by the ANLS

method. We shall benchmark these regions in the scaling studies

since time per function evaluation is the key performance charac-

teristic in the parallel setting.

4.4 Grid Choices
Matrix multiplication consumes the majority of the time for these

methods [9, 13]. Therefore, the choice of grid layout is a crucial one

for JointNMF. First, we sweep all possible combinations of grids

https://github.com/ramkikannan/planc
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Figure 3: Sweeping all grid configurations for running the ANLS variant of JointNMF on 1,024 processors. The experiment was
run on 43 nodes (1,024 cores) and the y-axis shows the 𝑝𝑟 value for the grid chosen (with 𝑝𝑐 = 1024

𝑝𝑟
). The aspect ratio shows

which matrix will cause the bottleneck computation. The best running times are always near the middle of the heatmaps.

for 1,024 MPI processes (43 nodes) and benchmark the different

matrix multiplication times for the ANLS method with a single grid

configuration. Two different aspect ratios, 4 and
1

4
, were used for

the experiments. Input dimensions𝑚 × 𝑛 for the dense and sparse

cases were (1,474,560×368,640), (179,200×716,800) and (2,457,600×
614,400),(307,200 × 1,228,800), respectively. All experiments were

run with 𝑘 = 50. The times are normalized by the number of

function evaluations and shown in Fig. 3.

Fig. 3 shows that depending on the aspect ratio,
𝑚
𝑛 , we can easily

determine which input matrix, X or S, dominates the computation.

The best runtimes appear near the middle of the heatmaps away

from the degenerate 1D distributions (𝑝𝑟 = 1 or 𝑝𝑐 = 1). Inves-

tigating a bit further, in Fig. 5 we can see the breakdown of the

computation and communication times for the sparse input with

aspect ratio 4. The communication times vary smoothly from the

1D to 2D distributions, with the minimum occurring when grid

dimensions mimic the inputs (see Fig. 5b). The computation times,

in Fig. 5a, are less smooth but the trend still applies. The effects of

grid selection on communication times (25×) is more dramatic than

on computation times (50%) as expected.

In theory, by adding the best possible times from Fig. 3, the

double-grid approach should outperform the single-grid one. We

run the same inputs using the best single and double grids, both

empirical from Fig. 3 and theoretical, to see if this optimization

works. Table 4 contains the different grid choices and their runtimes.

The deviation from theoretically optimal to empirical best grid is

minimal in the range of 3-11% across different cases even for large

matrices in Table 4.We thus use the theoretically determined double

grid for the rest of our scaling studies.

Table 4: Single versus double grids. We compare the runtime
between the empirically best grids versus the theoretically
optimal ones. The deviation in results were minimal.

Input (
𝑚
𝑛 ) Label X grid S grid Time

Dense (4)

Emp X 256 × 4 - 47.20 s
Theo X 64 × 16 - 52.45 s

Emp S - 128 × 8 50.75 s

Theo S - 32 × 32 48.92 s

Emp double 256 × 4 128 × 8 51.26 s

Theo double 64 × 16 32 × 32 52.65 s

Dense (0.25)

Emp X,S and theo X 16 × 64 - 46.78 s

Theo S - 32 × 32 46.87 s

Emp double 16 × 64 16 × 64 47.16 s

Theo double 16 × 64 32 × 32 45.35 s

Sparse (4)

Emp X,S and theo X 64 × 16 - 192.22 s

Theo S - 32 × 32 202.76 s

Emp double 64 × 16 64 × 16 191.00 s
Theo double 64 × 16 32 × 32 191.16 s

Sparse (0.25)

Emp X and theo S 32 × 32 - 182.01 s
Theo X 16 × 64 - 191.88 s

Emp S - 64 × 16 204.54 s

Emp double 32 × 32 64 × 16 185.03 s

Theo double 16 × 64 32 × 32 184.14 s

4.5 Scaling Studies
Strong and weak scaling results for the three variants are shown in

Figs. 4 and 6 for both dense and sparse inputs with the same aspect

ratios as the grid choice experiments. The problem sizes for strong

scaling fill up the memory of a single socket of the cluster. The input

sizes were (184,320×46,080), (23,040×92,160) and (384,000×96,000),
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Figure 4: Strong scaling results for both dense and sparse inputs. Matrix multiplication is the clear bottleneck for JointNMF
with NLS times also showing up for the ANLS and PGNCG algorithms. The computations scale well at the rate of 1

𝑝 while the
communication scales at 1√

𝑝
. The sparse methods scale better than the dense case.
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Figure 5: Grid choices for the sparse case with 𝑚
𝑛 = 4. The

best performance is observed in between the 1D distributions.
The effects of grid selection on communication times (25×)
is more dramatic than on computation times (50%).
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Figure 6: Weak scaling results for both dense and sparse
inputs. The size of the matrices per MPI process is kept con-
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Figure 7: Strong scaling results on real-world data. The final
speedups for ANLS, PGD, and PGNCGwere 33×, 25×, and 28×.

Table 5: Sample topics discovered from AMinerMAG.

Topic 1 Topic 2 Topic 3 Topic 4

ANLS

control social education acid

systems media health synthesis

design economic teaching reaction

motor society management amino

nonlinear people students acids

PGD

compound dependent condition correlated

spectrum children changing industrial

populations fold formed reliability

pathways assessed empirical grade

correlated investigate variation parameter

PGNCG

control social teaching acid

systems media education protein

design economic students activity

motor development learning synthesis

nonlinear society training dna

(48,000×192,000) for the dense and sparse cases respectively. Matrix-

multiplication dominates the running time with NLS coming in

second. Both these computations scale well as we see good scaling

till 10 nodes (240 cores) for both types of inputs. Past 240 processes,

we can see communication costs start showing up in the dense

timing breakdowns (see Fig. 4b) while sparse is still bottlenecked

by matrix multiplication and continues to scale (see Fig. 4c). This is

seen in the efficiency chart in Fig. 4a, with the sparse cases scaling

till 960 processes at 60% parallel efficiency while dense can only

achieve 20%.

Fig. 7 shows scaling results on the AMinerMAG dataset for all al-

gorithm implementations averaged over 50 iterations. The speedup

on 48 cores for the ANLS, PGD, and PGNCG implementations were

respectively 33×, 25×, and 28×. From this, we see the NLS,X compu-

tation (X Comp), and S computation (S Comp) dominate the runtime.

Similar to the synthetic experiments, the NLS time is particularly

high for the ANLS approach, resulting in both the proposed PGD

and PGNCG approaches being faster than it for all processor counts.

4.6 Text Clustering
To demonstrate the effectiveness of our implementations, we per-

formed text clustering on the AMinerMAG dataset utilizing each

algorithm, the results of which can be seen in Table 5. In each in-

stance, the algorithm was run on the AMinerMAG dataset for 100

iterations with 𝑘 = 16. The top five keywords from four selected

topics are provided to give a general intuition for the resulting

clusters. From this we observed that all three approaches yielded

interpretable clusters, empirically supporting the validity of the

algorithms and their implementations. Furthermore, we observed

that the clusters found by the ANLS and PGNCG implementations

bore striking similarities. This can be seen in Table 5 by the overlaps

in top key words between ANLS and PGNCG for the four selected

topics. Within the context of these experiments and based upon

the conclusions drawn from Fig. 2, it is likely that both ANLS and

PGNCG converged to a reasonable solution, whilst PGD did not

converge after the 100 iterations. This may serve as an explanation

as to similarities between the clusters found by ANLS and PGNCG,

as well as their interpretability relative to those found by PGD.

5 DISCUSSION
Among these first distributed-memory parallel methods for JointNMF,

ANLS and PGNCG outperform the first-order PGD method. In the

serial setting PGD remains relatively close to the other methods

by performing a large number of inexpensive update steps (see

Section 4.3), but this advantage disappears in the distributed sce-

nario. Distinguishing between ANLS and PGNCG is more difficult.

PGNCG performs one fewer large matrix multiplication per func-

tion evaluation but may perform more such calls during line search.

Performance was not very sensitive to the choice of logical pro-

cessor grid sizes except at extreme aspect ratios (see Section 4.4).

Nevertheless, the flexibility of the double grids is useful when one

would like to tune the local input matrix dimensions to either save

memory or exploit specific matrix multiply kernels.

The choice of using the Gauss-Newton method is difficult to

justify since it is hard to determine a priori if the Hessian approxi-

mation is close to the true Hessian of JointNMF. The residuals en-

countered during the course of the PGNCG algorithm can be large,

especially in the sparse case. PGNCG performs well empirically,

suggesting other second-order methods with fewer assumptions

on the Hessian like truncated Newton or L-BFGS for JointNMF

could also prove useful. That, as well as new applications of a scal-

able JointNMF, are perhaps the most interesting avenues for future

work.
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